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Abstract. We present a new approach to SAT solvers, supporting efficient imple-
mentation of highly sophisticated search heuristics over a range of propositional
inputs, including CNF formulas, but particularly BDDs. The approach memo-
izes search information using a new form of lookahead, called local-function-
complete lookahead, during an extensive preprocessing phase; we expect to do
further experimentation on heuristics made feasible by the memoization. Pre-
processing also includes manipulating inputs to more exploitable form. This ap-
proach has been incorporated, along with existing tools such as lemmas, to build
a SAT tool we call SBSAT. We show the feasibility of SBSAT by comparing it
to zChaff on several of the benchmarks. We also show an interesting dependence
of some standard benchmarks upon simply the independent/dependent variable
distinction.
Keywords: Satisfiability, State Machine, Binary Decision Diagram, DAG.

1 Introduction

Recent development of technologies for solving the propositional Satisfiability (PSAT)
problem has been so successful it has captured the attention of people working in areas
as diverse as theoretical physics and computer engineering. Significant among those
technologies are the use of conflict-resolution or lemmas to turn a tree search into a
DAG search, the development of advanced “lemma heuristics” for choosing the “best”
lemmas, partial lookahead for information that can be used to enhance “search heuris-
tics”, non-chronologicalbacktracking, and advanced data structures [LMS02,ZMMM01].
Newer technologies, e.g. based on autarkies [Kul98] and symmetry [Gol02,GN02],
show great promise.

But many PSAT problems still are difficult, and many of those do not naturally
appear as CNF problems. One can translate them to CNF and apply a CNF solver.
This translation need not expand the formula by more than a constant factor [Sch89],
but new variables must be added to achieve this. Moreover, some information may be
hidden by the translation, such as clustering of dependencies or distinctions between
so-called independent and dependent variables. Exploiting this information may speed
up a search.

Simply to emphasize that we are allowing non-CNF input, we shall refer to our
problems as PSAT rather than just SAT. One standard representation for complex boolean
functions is the Reduced Ordered Binary Decision Diagram (BDD) [Bry86]. A BDD is
a canonical DAG representation of a boolean function in terms of constants 0 and 1 and
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the if-then-else operator ite. For example, the tree representation of ite
���

��� ite ��� �����	��
��
��
�� ,
with the two 0 nodes are merged, is the BDD expressing

�
��� � � . Many problems in

microprocessor design, for example, such as in design verification and interconnect
synthesis, are more naturally expressed with BDD constraints rather than CNF con-
straints. Standard logical operations are easily implemented on BDDs, and BDDs have
been used successfully in many cases over the past 10 years. However, as the number
of variables grow, BDDs can grow exponentially, limiting pure BDD methods.

An obvious next step is to develop a hybrid algorithm, combining BDD tools and
Davis-Putnam-Loveland-Logemann (DPLL) search [DLL62].3 We propose here a new
variety of hybrid. Typically, the input will be a PSAT expressed in terms of BDD’s.
We also take full advantage of the huge memory capacity now routinely available on
general purpose, low-cost computers, to precompute (compute once, before starting the
brancher) as much as feasible.4

1. Do as much BDD-type preprocessing as is feasible. We define two new BDD opera-
tions for simplifying a collection of BDDs while avoiding size explosion: strength-
ening and branch pruning (Sect. 2).

2. Before applying a DPLL-style search procedure, precompute as much static infor-
mation as possible, to speed backtracking. (Sect. 3.)

3. Use a new search heuristic for choosing branching variables: A single BDD can
encode complex relationships among its variables; precompute complete looka-
head information for all its partial truth assignments, and then combine that looka-
head information accross input BDDs at branch time (Sect. 3). We call this local-
function-complete lookahead

2 BDD Preprocessing

SBSAT first preprocesses the input formulas, typically BDDs, before preparing for the
DPLL-type search. We borrow and modify techniques from BDD solvers, avoiding
techniques that will explode BDD size.

Individual BDDs not broken into CNF formulas may force some variables to be true
or false or force some literals to be equivalent. We identify this and simplify the input.
If a variable appears in only one BDD — in only � � among � ����������� ��� below — we
may use Boolean existential quantification: � ����� � ����������� �
� � is logically equivalent to
� ����� � ����� � � �!������� ��� . We can now solve the 1-fewer variable problem and choose

���
to satisfy � � after the search is done.

A simple BDD solver, given BDDs � ��� � ����������� �
� , may conjoin them, resulting in
BDD size explosion. We strengthen each � � : conjoin it with the projections of all other
constraints onto its variables; this may letting us infer literals or equivalences early.

At other times it is useful to decouple conjunctions. Given two BDD’s � ��� � � , we
branch prune duplicated logic, removing from BDD � � all branches that contradict � � .5

3 For other approaches, see, e.g. [PG96,GA98,PK00,KZCH00].
4 Preprocessing in SAT solvers is not new, but our automata (see Sect. 3) provide new ways to

use memoization.
5 The algorithm is a modification of Brace’s generalized cofactor algorithm on BDD’s [Bra90].
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There appear to be two gains: It can make our state machines (see Sect. 3) smaller. And
it often appears, by avoiding logic, to make our local-function-complete lookahead
heuristic’s evidence combination rule work better. (However, it can, in odd cases, also
lose local information.)

We provide user control for how much preprocessing to do, presuming the user can
learn what works well on what classes of problems.

3 State Machines and the LSGB Heuristic

We normally preprocess boolean constraints into acyclic Mealy machines called SMURFs
(for “State Machine Used to Represent Functions”). We may assume each constraint
implies no literals, since those would have been trapped during preprocessing. SMURFs
are described in Fig. 3. For a set of constraint BDDs, we compute the SMURFs for each
of the separate BDDs and merge states with equal residual functions, maintaining one
pointer into the resultant automaton for the current state of each constraint. For each
single boolean function there is a unique such state machine.

We precompute information for choosing branching variables. The weight of a tran-
sition is the number of literals forced on the transition plus the expected number of
literals forced below that state, where a forced literal after � additional choices is
weighted ����� � . ( � , set experimentally, is currently 3.) In Fig. 3, the transition out
of the start state on � � � has weight ��� � �� � �� � �� � �� �	��
 ; the transition out on

�
�
,


�� � �� � � �� � �� � �� � �� � �� �	��� . At brancher time we need only look up these
individual weights in a table.

Our “locally-skewed, globally-balanced” (LSGB) search heuristic, for ����� , is
similar to the “Johnson heuristic” in CNF. Branch toward forced inferences as quickly
as possible, narrowing the search space and getting lemmas fast. For each variable

� �
,

compute (i) the sum ���� of the weights of transitions on
� �

out of all current SMURF
states, and (ii) the sum ���� of the weights of transitions on � � � ; a high sum represents
a high “payoff.” Ideally for branching, both

� �
and � � � force many literals; we branch

on the variable
� �

maximizing ���� � � �� ; branch first toward the larger of ���� � � �� .6

LSGB is intended for applications where little is known about — or easily deter-
mined about — the given PSAT problem. It performs well there. If a problem is known
to have a lot of exploitable structure, it may be better to specify a different heuristic;
we allow experienced users some choice. SMURFs admit many heuristics; on a simple
heuristic, at worst, (except for preprocessing time) they do not hinder. Work is needed
on hybrid heuristics.

4 Lemmas

Except for data structures and search heuristics, SBSAT generalizes standard DPLL-
type searches. Having SMURFs output forced literals allows generalizing unit clause
propagation. SBSAT also makes extensive use of backjumping, recent advanced data
structures, and lemmas.

6 We borrow the idea of taking the product from Freeman [Fre95].
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Fig. 1. We preprocess BDDs into deterministic Mealy machines called “SMURFs.” This example
explains construction. ite denotes if-the-else and � denotes exclusive or.

The SMURF represents ite ��� ��� � ��� ���	�	�
����
 � ��� � ��� � �
�	��
�
 . It represents, in part, BDDs
for the function under all possible variable orderings — since we cannot know in what order the
brancher considers the variables.

The start state (upper left) represents the original function. On the left is a transition from
the start state labeled “ � ��� � � ”; this means that, from that state, on input � � , the automaton makes
a transition and outputs ��� ��� . If the brancher guesses, or infers, that � � is true, it will “tell” the
automaton to branch on � � . The output of � � tells the brancher that � � must also be true — the
analogue of unit inference in CNF. This transition goes to a state labeled � � ��� � , meaning that,
after � ��� � � are set to 1, what remains to be satisfied — the residual function — is ��������� . On
the upper right are three transitions shown with one arrow. The first is from the start state on input� � � ; it outputs � � � � � � � � � � � and goes to state 1 — meaning the original BDD is now satisfied,
i.e., that there is no residual constraint to satisfy.

Some user problems, e.g., the dlx benchmark suite made available by Miroslaw
Velev [Vel00], use very long clauses and long assignments ������� ����������� �� or �	���
� �"! ����� ! �� (where the �	# s are literals). To save space while keeping a formula in a sin-
gle structure (to maximize functional-complete-lookahead), we have separate data structures for
storing these three forms (also long linear expressions) using counters, plus lookup tables to for
the transition weights as functions of those counters (exactly as if in the Mealy machines).

Otherwise, to avoid extreme state explosion — at worst, the SMURF for an $ variable
boolean function may have almost %'& states — we limit individual constraints to 17 variables.
(We expect to add routines to split functions of more variables automatically by introducing de-
fined variables). This limitation has been of little significance so far; indeed, we believe that on
some practical benchmarks SBSAT suffers from the problems being broken down too far for it to
take advantage of input data clustering.
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SBSAT creates clause lemmas, not BDD lemmas, for efficiency. It creates lemmas
lazily — during branching — memoizing them in a lemma cache.7 SBSAT creates a
lemma when a literal is forced and resolves lemmas during backtracking. Lemmas that
seem useful are cached. During the search, if a partial assignment negates all but one
literal of a clause, that last literal is inferred true. SBSAT uses a modified Chaff-type
data structures for the cache [LMS02]. Chaff restarts when it fills its lemma cache;
SBSAT continues, deleting the lemma least recently used. More work is needed here.

5 Computational Results

Our primary interest has been to provide a platform for sophisticated search heuristics.
We report work on two sets of benchmark problems: a set of random “sliding window”
problems, and the dlx benchmark suite made available by Miroslaw Velev [Vel00]). We
compared SBSAT to zChaff [MMZZM01], the most successful CNF solver to date on
several of the dlx problem sets.

The dlx problem sets, arising from microprocessor-verification work at Carnegie
Mellon, seemed almost prohibitively difficult before Chaff. Now Chaff versions can
solve them all relatively easily. We show below that, with suitable tuning, SBSAT can
be competitive with zChaff.

“Suitable tuning” involves two steps: The LSGB heuristic, tailored for a different
sort of problem, was replaced with a simplification “nChaff” (near Chaff) of Chaff’s
heuristic. We see below that, on these problem sets, much of what zChaff finally ex-
ploits is the difference between independent and dependent variables. Here a dependent
variable is one which the user defines, in the trace format versions of the dlx set, in
terms of an assignment. On dlx, having SBSAT always branch on dependent variables
before independent variables can speed up the search massively.8 There are other prob-
lems where branching on independent variables first significantly speeds up the search.
This suggests the possibility of dovetailing choices, alternating between branching on
independent and dependent variables. Importantly, by staying in the user domain rather
than CNF, SBSAT can easily separate variables which the user describes as dependent.

Times reported below include preprocessing times. SBSAT input was in CMU’s
trace format, not CNF, allowing for automatic detection of dependent variables. Mea-
surements were taken on a 2GHz Pentium 4/Linux v. 2.4.7 platform with 2GB RAM.
SBSAT’s lemma cache size was set to 20000.

Now zChaff still is faster; e.g., on dlx2_cc it runs over four times as fast as the
best SBSAT run. This is due to zChaff’s simplicity — and thus fast execution: it makes
24,305 decisions, whereas, with dependent-first variable choice, SBSAT makes 25,921

7 We have not yet incorporated Chaff’s “critical path analysis.”
8 This is in conflict with a frequent intuition that we should branch first on independent vari-

ables, since they are forced anyway. There has indeed been a fair amount of discussion about
independent variables and dependent variables and whether to branch on one type before the
other [KMS97,CGPRST01,Sht00,GS99]. We do not know whether this effect is intrinsic to
the logic of these circuit design problems or to the way the designer thought about them. Of
course, we also do not know how zChaff would perform if the user were allowed to input
domain knowledge — in this case that it is wise to branch on dependent variables first.
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Table 1. Times (in seconds) for zChaff and SBSAT on some dlx problems.

Benchmark zChaff SBSAT SBSAT SBSAT SBSAT
/LSGB /LSGB nChaff nChaff

depndt-1st depndt-1st

Satisfiable:
dlx2_cc_bug01 1.00 347.92 12.31 6.22 5.25
dlx2_cc_bug08 1.13 3.12 2.99 3.64 3.01
dlx2_cc_bug40 0.94 272.38 10.01 14.78 4.34

Unsatisfiable:
dlx2_dlx2_aa 0.14 1.98 0.99 2.34 0.92
dlx2_dlx2_cc 1.43 1361.02 18.39 14.76 6.18

backtracks under LSGB and 15,079 backtracks under nChaff. But SBSAT is becoming
competitive.

Recall also that SBSAT gives the user a choice of heuristics, letting the user gain
experience with what kinds of heuristic help on various classes of problems. We be-
lieve that the success of the dependent-variables-first heuristic illustrates the utility of
providing that choice.

As noted earlier, regardless of whether the LSGB or nChaff search heuristic is em-
ployed, great performance for SBSAT seems to depend more on choosing dependent
variables first than on the search heuristic. From the way the zChaff results follow the
SBSAT results and considering that SBSAT does not take into account any weighting
of lemmas as zChaff does when choosing a variable for branching, one might suppose
that the strength of zChaff on the dlx benchmarks is more due to zChaff’s heuristic
happening to choose dependent variables before independent variables than to restarts,
data structures, or any other feature of zChaff. We leave investigation of this remark to
a future paper.

Our goal was partly to build a solver for PSAT problems not handled well by other
solvers — not dealt with by traditional CNF tools, such as lemmas. The “sliding win-
dow” problems (below) were devised to be computationally hard for these solvers. In its
current form, zChaff is somewhat handicapped by its clever data structures for lemma
handling, which limit the search heuristics it can use effectively. The strength of the
heuristic power SBSAT (using LSGB), relative to zChaff, is demonstrated by these
“sliding window” problems.

Generate � constraints over � variables ( � even) as follows: Pick random boolean
functions, � ��� � � � ��� ��������� � ��� � � ��� � � , 	 �
� � � ��� � ��������� ����
 � � ��� � � (with variables explicitly
listed, in order of subscript, and � ��� are relatively small). The constraint set is� � �
� � ��� � ���

� ���
��� �������

� � �
��� �
��� �
��� ���	
�� �!�

� � � �	�#"%$� 	 �
� � ��� �
� � �
��� �������
�

� ��� � ��� � �'& � � 
%�(�)�
� � � �	�*" , where each & � is randomly

chosen to be 0 or 1. This provides distinct pattern to the data but gives no global impor-
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tance to one single variable over another; fast search depends upon identifying variable
groups, not single variables.9 Experimental results are shown in Table 5.

Table 2. Times for zChaff and SBSAT on sliding windows problems. SBSAT lemmas were dis-
abled.

#Var- Satis- zChaff SBSAT
iables fiable? (seconds) (seconds)

60 sat 0.15 0.76
60 unsat 1.74 1.05
80 sat 1.00 1.38
80 unsat 149.53 9.98

100 sat 8.92 1.47
100 unsat 2288.11 153.70
120 sat ����������� 89.90
120 unsat ����������� 4259.74

On the small examples, SBSAT is slower than zChaff; this is due entirely to prepro-
cessing time. Thus examples seem to illustrate that, when there are few key variables in a
problem for zChaff to discover as it builds lemmas, zChaff’s search is highly inefficient.
This motivates using another paradigm, such as an heuristic based upon local-function-
complete lookahead, in such circumstances.

Our goal in this project was to provide a suite of tools to approach problems beyond
the scope of other current solvers. To this end we provide the user with choice of option,
so that the user may exploit domain knowledge. We have also tried to deal with prob-
lems, such as the “sliding window” problems above, which are particularly difficult for
current solvers.

This research was partially supported by U.S. Department of Defense grant MDA 904-02-C-
1162.
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