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Abstract

This dissertation focuses on research for state-based Satisfiability (SAT) [64–66], a variant of SAT

that uses state machines (Smurfs) to represent constraints. Using this constraint representation

allows for compact representations of SAT problem instances that retain more ungarbled user-

domain information than other more common representations such as Conjunctive Normal Form

(CNF). State-base SAT also supports earlier inference deduction during search, the use of powerful

search heuristics, and the integration of special purpose constraints and solvers.

SBSAT, a state-based SAT research platform [144], was used and enhanced for both researching

the new techniques presented here and gathering experimental data. Since the power of state-based

SAT is diminished on problems naturally represented in CNF, the benchmarks used to collect results

focus on domains with rich constraints such as verification and model checking.
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Chapter 1

Introduction

This chapter mainly serves as an introduction to state-based Satisfiability. Though, first, details

of some of the technologies that support state-based Satisfiability are presented. The structure of

this dissertation and some general notation are also given.

1.1 Satisfiability

Satisfiability (SAT) is a formal methods technology recognized as an essential element of solving

finite-domain constraint satisfaction problems, i.e. given a set of constraints, find a way to either

satisfy them or determine that they cannot be satisfied. Such problems are found in an increasing

number of domains such as verification, bioinformatics, cryptography, and planning, to name a few.

The recent popularity of SAT is due to a number of reasons, the first of which is its ease of use. SAT

solvers (computerized tools that solve SAT problems) are, for the most part, totally automated.

Traditional constraint solvers (such as theorem provers) tend to require immense human interaction.

This is in sharp contrast to SAT solvers, which can be used successfully by a novice who doesn’t

need to understand anything about how the solver does what it does, i.e. users are expected to

treat the SAT solver as a black box. SAT solvers are also plenteous; scores of open source SAT

solvers are freely available for download from numerous academic and industrial web-sites. The

number and quality of solvers are driven both by yearly competitions and the fact that the main

solving algorithms are rather simple to implement. Also, discovering ways of speeding up SAT
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solvers can feel very rewarding and involves the kind of thought that really engages the mind of a

skilled programmer.

Yet another reason for the rise in popularity of SAT solvers is that they are customizable

and pluggable, making for easy integration with other software tools such as package managers,

symbolic simulators, SMT solvers, bounded model checkers, equivalence checkers, and so on. Even

some established computer languages such as Java [102] and Haskell have well developed interfaces

to native SAT solvers1.

Finally, SAT solvers are revered for their power. Using a SAT solver can sometimes feel like

magic as they quickly solve problems that seem impossible. For example, imagine an implementa-

tion of the Advanced Encryption Standard (AES) [50]2 that is incorrect in such a way that only one

key causes the algorithm to be wrong, and perhaps in a malicious way such as: this one malicious

key causes AES to realize the identity function, stripping away all security. It seems fantastic that

there are SAT solvers capable of finding this one incorrect key (out of 2256 possible for AES-256)

in a matter of seconds! Because of their ease of use, flexibility, and power, it is often the case

that solving a combinatorial problem with a SAT solver turns out to be better (in terms of both

development time and solving time) than creating a special purpose solver. And, in the cases where

a special purpose solver is needed (perhaps for efficiency), SAT is often a useful tool for prototyping

ideas; developers can treat SAT as a general purpose decision procedure and test various search

techniques and heuristic strategies in order to hone special purpose solvers.

A formal definition of SAT, as well as some examples and the theory behind it, are presented

in Section 2.1 on page 16.

1.2 Successes and Pitfalls

At present, Satisfiability (SAT) has replaced Binary Decision Diagrams (BDDs) for being the

preferred problem solving method for several areas of formal verification [123] such as equivalence

checking [98–100,122,151] and model checking [27,60,112]. This change is due to recent research in

1Cryptol, a domain specific language for cryptography [104], also has an interface to SAT solvers
2AES is a cryptographic block cipher with a 128/192/256-bit key and 128-bit plaintext
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SAT that has produced solvers much more efficient than BDDs on many practical problems. Also,

there has been little compelling research of late providing enhancements to BDDs.

The move from BDDs to SAT happened even though BDDs have many strengths over SAT.

As Boolean constraints, BDDs support more powerful conflict and implication detection than Con-

junctive Normal Form (CNF) [51, 119] and naturally capture more domain specific information

than CNF3. In terms of proof complexity, BDD-based refutations are exponentially more powerful

than resolution [9], and hence exponentially more powerful than current SAT techniques (which

are based on resolution [118]). Also, BDD-based refutations can simulate in polynomial time (p-

simulate) [47] resolution, Gaussian calculus, and other proof systems [9], whereas resolution, though

powerful for some problem classes, cannot p-simulate BDDs [75]4.

The main limitation with traditional BDD methods is that the pairwise conjunction of two BDDs

may need to create an exponential number of intermediate BDD nodes to produce the resulting

BDD (even under the best possible variable orderings [36, 147]). In this respect, the conjoining of

BDDs is similar to the early Davis-Putnam (DP) algorithm [55] in that both operations may cause

exponential memory blow-up; BDD conjunction can create an exponential number of new BDD

nodes and DP’s resolution step can create an exponential number of new resolvents. In the case of

DP, this exponential memory blow-up was made linear by refining DP into a backtracking search

algorithm (named Davis-Putnam-Logemann-Loveland (DPLL) [54]).

The recent successes of SAT solvers are due in part to a collection of techniques that occurred

within the framework of DPLL, and thus are specialized to work on CNF. These techniques directly

contribute to the increased solving power and efficiency of modern SAT solvers. One such technique,

conflict clause learning, helps to create a dynamic search space that is DAG-like instead of tree-

like as was the case for early DPLL-based algorithms [17]. When this technique is coupled with

restarts [83,94], the resulting algorithm (known as Conflict-Driven Clause Learning (CDCL) [110,

3A proof system is deemed more powerful than another if it can simulate the other efficiently, and the latter cannot
efficiently simulate the former [16]. This is distinctly different than the feasibility of a method to arrive at a solution
for a given problem.

4For example, Pigeon Hole [77] problems can be solved in a polynomial number of steps using extended resolu-
tion [46] or BDDs [44] and k-XOR (parity) formulas can always be solved in a polynomial number of steps using
Gaussian elimination, which BDDs can p-simulate; both of these problems can require an exponential number of
resolution steps.
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111,125]) is as strong as general resolution, which is exponentially more powerful than DPLL [17].

This and other such techniques have allowed SAT solvers to be used practically in a wide range of

fields such as verification [29,97,138], bioinformatics [107], cryptography [116,129], and planning [49,

149] as well as on many hard combinatorial problems such as van der Waerden numbers [59,95,96].

Also, the recent integration of SAT-based techniques with theory solvers (named Satisfiability

Modulo Theories (SMT) [126]) is enabling push-button solutions to industrial-strength problems

that previously required expert human interaction to solve (for example, see [30,76,85]).

However, SAT has its limitations, many of which (ones believed to be stalling further progress

[142]) center around the syntactically restrictive CNF representation. In general, constructing a

SAT instance involves translating a problem from some more expressive domain into CNF. This

translation can garble domain specific information crucial for efficiently determining a solution

to the original problem. For example, CNF contains no explicit information about control flow,

and hence, control flow is garbled when encoding a combinational circuit into CNF. Also, the

forced 2-level logic of CNF causes CNF-based search heuristics to be limited to purely syntactic

considerations.

Some research efforts have pursued a combination of SAT and BDD-based methods (see [6,51,

64–66,68,89,91,139]) with hopes that taking the best of both worlds will result in new techniques

that overcome both the syntactic limitations of CNF and the memory limitations of BDDs. The

intuition here is that applying a generalization of DPLL to collections of BDDs (instead of collections

of clauses) effectively removes the exponential memory blow-up of BDDs (as DPLL did for DP)

and also opens the doorway for other SAT techniques to tap into the power of BDDs. This

enables the development of, for example, more advanced search heuristics and stronger inference

and conflict detection mechanisms. The challenges here involve generalizing CNF-based methods,

such as Boolean Constraint Propagation (BCP) [148], to BDDs while maintaining efficient search5;

the SAT community has put significant effort into making CNF-based search methods efficient.

5See [87] for such a generalization.
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1.3 State-based Satisfiability

Most relevant to this dissertation is the research of [64–66] where collections of BDDs are trans-

formed into collections of state machines and then a DPLL-like search is performed. This area

of research is called state-based SAT. The limitations of BDDs (that is, variable orderings) and

CNF (2-level logic and very limited expression per constraint — that is, clause) disappear with

state-based SAT. State machines can be used to efficiently represent clauses, BDDs, and many

more (even non-Boolean) functions6.

State-based SAT enables 1) the use of expressive constraints that can be used to exploit user-

domain information, 2) the use of heuristics that capitalize on global semantic relationships between

constraints, and 3) the integration of constraint-specific solving techniques, all while supporting

(and sometimes strengthening) the recent SAT solving techniques that make SAT solvers so pow-

erful. Briefly, the state-based SAT solving process entails creating a collection of state machines,

each of which represent the complete search information for a segment of the input representation,

and performing a DPLL-like search. Since complete search information has been memoized for

each constraint, inferences are discovered earlier and advanced search heuristics can be applied,

potentially reducing the size of the search tree. The ideas and techniques presented in this disser-

tation are intended to significantly advance the current state of SAT solving by 1) discovering new

state-based SAT implementations of domain specific constraints and heuristics, 2) adapting current

SAT techniques to the more expressive domain of state-based SAT, 3) enhancing SAT techniques

by exploiting the expressiveness of state machines, 4) adapting other constraint solving techniques

to state-based SAT, 5) and supporting the development of new techniques for speeding up search

that are enabled by state-based SAT7. Finally, the state-based SAT paradigm is evaluated and

results demonstrating the effectiveness of each of the proposed enhancements are given.

6For example, cardinality constraints are trivial to represent as efficient and arc-consistent state machines (see
Section 4.1.4 on page 53), but very complex to efficiently represent in CNF [13,20,63,109].

7The aim of this dissertation is very similar to that of [58], except that where their focus is on Pseudo-Boolean
(PB) constraints, the focus here is on Boolean constraints encoded as Smurfs.
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1.4 Structure of the Dissertation

This dissertation is laid out as follows: Chapter 2 on page 16 gives further background information

on the technologies that support state-based SAT such as BDDs, CDCL solvers, and Smurfs. The

chapter also provides background on the tools supporting this dissertation such as SBSAT, the main

research platform used to test and benchmark all the new techniques presented in this dissertation.

Translation to CNF from a domain with rich constraints can cause a loss or blurring of structure,

structure important to activate the benefits of state-based SAT. Some domain specific structure

can be recovered by searching for common patterns of clauses that correspond to known, and

commonly occurring higher level structures. Any corresponding clauses can be discarded in favor

of the higher level structures. Techniques along these lines work well when the user domain is

known ahead of time. A way to recover structure when the user-domain is not known is to cluster

clauses into components. Here, clustering is guided by a heuristic with the aim of approximating

higher level structures while remaining functionally equivalent to the original CNF. Chapter 3 on

page 30 focuses on these two topics, namely, pattern matching and clustering in support of structure

recovery. The chapter provides new preprocessing methods that recover structure from low-level

input, transforming it into a set of higher level constraints amenable to state-based SAT. Also,

experimental results for each of the described methods are presented.

Chapter 4 on page 48 provides methods for transforming preprocessed user input into an implicit

conjunction of Smurfs, the main data structure of state-based SAT [65,66]. Smurfs are capable of

representing generic Boolean constraints and support efficient inference propagation and heuristic

computation during backtracking search. The chapter provides new precomputation methods and

data structures that support and enhance state-based SAT. Specifically, special arc-consistent [71]

Smurf data structures are introduced (i.e. produce the same inferences as a general Smurf while

providing special compact representations for common Boolean functions), along with techniques

that increase sharing among the Smurf collection and relax prohibitively expensive precomputa-

tion. Experimental results are presented that weigh the benefits of each precomputation technique

both individually and cooperatively.

Preprocessing and precomputation, though both interesting in their own right, are really means
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to an end - supporting state-based SAT search. Chapter 5 on page 66 provides details on how

state-based SAT supports recent SAT techniques, such as conflict clause learning, and shows how

it can be used in tandem with both CDCL solvers and special purpose solvers. Specifically, part

of the work of this dissertation involved developing parts of SBSAT into a library and plugging it

into the CDCL solver funcsat. In this embodiment, funcsat is driving the search and managing

learned conflict clauses while SBSAT provides inferences and witness clauses during BCP. A library

for performing Gaussian elimination has also been developed and plugged into SBSAT. In this

embodiment SBSAT is driving the search and passing factored XOR constraints to the Gaussian

elimination solver as they are discovered. Experimental results are presented for both approaches.

Finally, Chapter 6 on page 93 provides a summary of the contributions of this dissertation as well

as possible future directions.

1.4.1 Notation

This dissertation follows common practices with regard to LATEX typefaces and scientific terms. The

typeface “Sans serif” is used for denoting tools such as SBSAT and funcsat. The typeface “Small

caps” is used for denoting algorithms or methods such as Restrict and BddMininf. Finally, the

typeface “Typewriter” is used for denoting logical operations, Boolean gates, and constants such

as True and False.
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Chapter 2

Supporting Technologies

This section provides background on technologies used to support state-based SAT.

2.1 Satisfiability

Satisfiability is a Knowledge Representation mechanism that encodes finite-domain Constratint

Satifaction Problems (CSP) [8,57] as Boolean functions. Given a finite-domain CSP P, the Boolean

formula ϕP encoding P has the property that there is a one-to-one and onto correspondence between

solutions to P and satisfying assignments for ϕP . Specifically, the Satisfiability (SAT) problem is:

given a Boolean function ϕP with variables "x, find a mapping of "x to {False, True} that causes

ϕP to evaluate to True. Such a mapping is called a solution or satisfying assignment for ϕP . If a

solution exists then ϕP is satisfiable. If no solution exists then ϕP is unsatisfiable.

Satisfiability is not the only mechanism that can be used to represent finite-domain CSPs. Other

logic-based formalisms expressing CSPs include Reduced OrderedBinary Decision diagrams [35],

Answer-Set Programming [14], and, central to this dissertation, Smurfs [65,66]. Traditionally, ϕP

is expressed as a conjunction of clauses where a clause is a disjunction of literals and a literal is

either a Boolean variable or it’s negation, i.e. x or x. A formula expressed in this form is called a

Conjunctive Normal Form (CNF) formula. Here is an example CNF formula:

(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
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Assigning value True (False) to a variable x is denoted by x !→ True (x !→ False), respectively.

One of the (many) solutions to this formula is {x1 !→ True, x2 !→ False, x3 !→ False}. Though

a solution may be hard to discover1, checking whether or not a solution satisfies a given CNF

formula is linear in the number of clauses of the formula. CNF formulas have become popular

because every Boolean function can be re-expressed in CNF with at most a polynomial increase

in the size of the resulting CNF formula. Also, every CNF formula can be solved (given enough

resources) by repeatedly applying the resolution rule until either no more resolutions are possible

(in which case the CNF formula is satisfiable) or the empty clause is generated (in which case the

CNF formula is unsatisfiable). The Davis-Putnam (DP) algorithm [55] is one such instance of the

repeated application of the resolution rule, a (conceptually) very simple algorithm, though very

inefficient on practical problems due to the exponential number of intermediate resolvents that can

be generated. As mentioned in Chapter 1 on page 9, DP was quickly reworked into a backtracking

search algorithm, named Davis-Putnam-Logemann-Loveland (DPLL), which removed the need to

store the intermediate resolvents [54]. This reworking also changed the problem space, that is, DP

is as strong as regular resolution while DPLL is as strong as tree resolution (both of which are

exponentially weaker than general resolution) [17].

Recent SAT research has focused on enhancing the DPLL algorithm with the aim of regaining

the power of DP while maintaining the memory efficiency of DPLL. Learned resolvents2 are used

to avoid re-exploration of structure sharing sub-trees, resulting in a relaxation of the structure of

the search tree. By combining dynamic heuristics with systematic restarts, learned resolvents and

new heuristic information are used to transform the search tree into a search DAG in an attempt to

avoid heavy tailed behavior [72]. The resulting algorithm, named Conflict-Driven Clause Learning

(CDCL) [110,111,125], is as strong as general resolution [17], as fast (or faster) than DPLL3, and

does not suffer from the memory problems of DP.

1Satisfiability is the canonical NP-complete problem and hence the best known algorithms require O
(

2|!x|
)

steps
in the worst case.

2Namely, those generated via Unique Implication Points (UIPs) in the implication graph (see Section 2.2 on the
following page).

3Recent efficient data structures, such as watched pointers, have greatly increased the speed at which inferences
can be discovered and propagated during search.
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2.2 CDCL Techniques

Early SAT solvers used refinements and enhancements to DPLL to solve SAT instances. Recently,

these refinements and enhancements have matured, becoming standards in a parameterized algo-

rithm far enough removed from DPLL that it is commonly referred to as Conflict-Driven Clause

Learning (CDCL) [110,111,125]).

The reasons for the increased solving power of modern SAT solvers lie in the specialized CDCL

techniques they employ, namely, conflict directed heuristics [117], watched pointers [69, 106, 117],

conflict clause generation [111,117], conflict clause minimization [18,70], intelligent conflict clause

memory management [10], and dynamic restarts [83, 94], among others. These techniques are

tailored to support core CDCL operations such as BCP and heuristic computation and seem to

work best when the SAT instance being solved has a small resolution proof, even instances with

millions of variables and clauses. Lazy techniques, such as watched pointers and intelligent memory

management (garbage collection), are used to efficiently update the state of the solver during

search. Conflict directed heuristics and restarts are used to reorder the search DAG in an effort to

focus search on unsatisfiable cores. And, conflict clause generation helps detect conflicts earlier by

learning new resolvents that keep the search from re-exploring parts of the search space.

The above stated CDCL techniques are necessary components of any competitive state-based

SAT solver. Chapter 5 on page 66 presents state-based SAT adaptations for many of these tech-

niques, some of which have already been competitively adapted to state-based SAT (see [66]).

2.3 Binary Decision Diagrams

Another supporting technology is the Binary Decision Diagram (BDD). First introduced by Lee

[103], Boute [31], and Akers [1], a BDD is a rooted directed acyclic graph that is commonly used

as a compact representation of a Boolean function. Every node is labeled by the name of an input

variable, except for the two leaf nodes labeled T (for True) and F (for False). Every non-leaf

node has two out going edges, one labeled T and one labeled F. Given a particular ordering of

variables, every path from the root to the True (False) node represents an assignment of values to
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input variables that cause the Boolean function to evaluate to True (False). Reduction rules exist

to transform BDDs into a canonical form, namely, Reduced Ordered Binary Decision Diagrams

(ROBDDs) [35]. From now on the term BDD is used to mean ROBDD. The basic BDD operations

are introduced and discussed in more depth in [33,35,131].

BDDs can be used both to preprocess and to solve SAT problems. One way to conceptualize this

is to think of BDDs as buckets that hold clauses. When two BDDs are conjoined (i.e. buckets are

merged) the BDD reduction rules work to turn the two buckets of clauses into a single canonical

form that can be checked for satisfiability in constant time. Specifically, BDD clustering is the

ordered pairwise conjoining (logical AND) of all BDDs in an implicit conjunction.

To determine the satisfiability of a given CNF formula using BDDs, first build one BDD for

each clause. Next, choose an ordering under which pairs of BDDs will be conjoined. Finally, use the

chosen ordering to perform BDD clustering until either the False BDD is created (in which case the

formula is unsatisfiable), or until all BDDs have been conjoined, i.e. the monolithic BDD is created,

in which case the formula is satisfiable and every path from root to leaf represents a partial solution.

The drawback here is that the BDD conjunction operation can create an exponential number of

new BDD nodes. Fortunately, there are many techniques that work in tandem with clustering to

reduce the size of the BDDs. Those presented here include dynamic variable reordering, existential

quantification, safe assignments, and the pairwise BDD methods Constrain, Restrict, and

Strengthen.

Dynamic variable reordering [124] is crucial to BDD applications because the number of BDD

nodes needed to represent a function can fluctuate by orders of magnitude depending on which

ordering is used. It is often necessary to find the right variable ordering to efficiently solve hard

industrial problems lest the number of BDDs nodes explode during clustering [3, 37,121,128,131].

Existential quantification (see Definition 2.3 below) provides crucial support during clustering

by removing variables in the attempt to reduce the size of the conjunction of BDDs. Specifically,

existential quantification is used to safely4 remove variables once they have become isolated in a

single BDD. This operation is an essential component of Early Quantification, first proposed in [40]

4Safe here means that the operation does not change the satisfiability of the conjunction of BDDs.
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and later applied to SAT in [74]. Since then, the method of early quantification has become an

integral part of BDD-based solving (see Section 3.2 on page 38).

Definition Let x be a Boolean variable in the support of a Boolean function ϕ. Let ϕ |x (ϕ |x)

denote the result of the assignment x "→ True (x "→ False) to ϕ. Existentially quantifying x away

from ϕ means replacing ϕ with ϕ |x ∨ ϕ |x.

In [143] it is shown that, if certain conditions are satisfied, variables may be safely existentially

quantified away before being isolated in a single BDD, i.e. existential quantification can sometimes

be distributed over conjunction. This technique has the added benefit of also being able to assign

values to variables during quantification. This technique helps bypass the exponential blowup that

can be incurred by conjoining BDDs and, at the same time, simplifies the problem through safe

global variable assignments.

There exist a slew of pairwise BDD operations that aim to reduce the size of the BDDs and reveal

information that may be exploited during solving (see [66, 80]). Constrain [48], Restrict [48],

and Strengthen [141] are just a few. Other such operations exist (see [127] for some others) but

only these three will be described here.

Each of these operations take two BDDs, call them f and c, and produces a BDD g that can

replace f without modifying the satisfiability of f . In general, this is done by considering the truth

tables corresponding to the two BDDs f and c over the union of the support of both f and c, and

hence the new BDD g will have support no larger than the union of the support of f and c. The

new BDD g is produced by sibling substitution, by which is meant that rows of g’s truth table which

c maps to True g maps to the same value that f maps to, and on rows which c maps to False g

maps to any value, independent of f . It should be clear that f ∧ c and g ∧ c are identical so g may

replace f in a conjunction of BDDs without changing the solution space of the conjunction.

The are at least three reasons why this type of operation can be beneficial. The superficial

reason is that g can be made smaller than f . A more important reason is that inferences can be

discovered. The third reason is that whole BDDs can sometimes be removed from the conjunction.

Constrain, introduced in [48], is a generalized co-factoring operation that produces a BDD

that may be either larger or smaller than f . More importantly, systematic use of this operation
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can result in the elimination of BDDs from a conjunction. Unfortunately, by definition, the result

of this operation depends on the underlying BDD variable ordering so it cannot be regarded as a

logical operation.

The Restrict operation, similar to Constrain in that it is sensitive to BDD variable ordering,

is guaranteed to produce a BDD that contains no more variables than f . Basically, Restrict

prunes the subtrees from f that are either duplicated or in conflict with corresponding subtrees of

c. This operation may reveal inferences that could be found by conjoining f and c, but without

the combinatorial explosion of conjunction.

The Strengthen operation, like Restrict, does not increase the number of variables, but

also helps reveal inferences that are missed by Restrict due to its sensitivity to variable ordering.

Given two BDDs, f and c, Strengthen conjoins f with the projection of c onto the variables of

f : that is, f ∧ ∃!xc, where "x is the set of variables appearing in c but not in f . Pseudo code for

Strengthen is shown in Algorithm 1.

Algorithm 1 Strengthen(BDD f , BDD c)

1: "x := {x : x ∈ Support(c), x /∈ Support(f)}
2: for each x ∈ "x do

3: c := ∃xc
4: end for

5: return f ∧ c

Applying the Strengthen operation to each pair of BDDs considered during clustering some-

times reveals additional inferences. Strengthen provides a way to pass important information

from one BDD to another without causing an increase in the number of variables of any BDDs

because, before f is conjoined with c, all variables in c that don’t occur in f are existentially

quantified away. If an inference exists due to just two BDDs, then applying Strengthen to them

(i.e. pairwise) will move those inferences, even if originally spread across both BDDs, to one of the

BDDs. Because Strengthen shares information between BDDs, it can be thought of as strength-

ening the relationships between BDDs. Also, the added shared structure of these strengthened

BDDs can be exploited by a search heuristics, as reported in [66].
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2.4 Smurfs

Performing CDCL search on collections of non-clausal Boolean functions requires, foremost, a

Boolean function representation; BDDs are used here. Also required are methods to propagate

assignments and discover inferences based on a partial assignment, gather heuristic information,

and backtrack. Performing search on BDDs has been attempted many times, see [6, 51, 68, 87, 89,

91,139,148]. However, performing basic backtracking search operations on BDDs, such as inference

detection, can be expensive (see Figure 2.1 for an example). One way to perform efficient search

is introduced in [64–66] where inference and heuristic information are precomputed from BDDs

and stored as a collection of Smurfs (State Machines Used to Represent Functions), the central

component of state-based SAT. Smurfs enable efficient search on collections of non-clausal Boolean

functions.

x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x3

x3

F

x2

x1 x1

T

x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x3

x2

x3

T

x1

F

Figure 2.1 — Two BDDs for the Boolean function x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x3 built using different
variable orderings. The function implies x1 "→ False. Discovering this fact is computationally
expensive under some BDD variable orderings (e.g. the left BDD) and trivial under others (e.g. the
right BDD).

A Smurf is an acyclic Mealy machine [113] where each state (or node) represents a function5

and transitions (or edges) represent partial assignments to variables of the function. A Smurf

state representing a Boolean function ϕ with n variables has 2n transitions, each labeled by a

5Though all Smurfs discussed here are purely Boolean Smurfs, Smurfs can represent more than just Boolean
functions.
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literal representing one of the possible assignments to ϕ. Following a transition labeled l from a

state representing ϕ will result in the state representing ϕ |l. Useful information, such as inference

and heuristic computations, can be stored at both the states and transitions of a Smurf. See

Figure 2.2 for a graphical depiction of a Smurf and its corresponding BDD.

x1 ⊕ x2x3

F

x3 x3

x2

x1

x2

T

x1 ⊕ x2x3

x2 : x3 x2 x3 : x2 x3 x1 : x3 x1 : x3 x3 : x1 x3 : x1

x2

x1 : x2x3 x2 : x1 x3 : x1

x1

x1 : x2 x1 : x2 x2 : x1 x2 : x1

x3

True

x1 ⊕ (x2 ∧ x3)

x2 ∨ x3 x1 ⊕ x2x1 ⊕ x3

Figure 2.2 — Both the BDD and the Smurf representing the function x1 ⊕ x2x3. Smurf states are labeled by
the Boolean function they represent. Smurf transitions are labeled by the assigned variable and
list of inferences (if any exist).

Forward computation, such as applying an inference to a Smurf, is performed by traversing the

appropriate transition. Precomputed inference and heuristic information can be read directly off the

current state of the Smurfs. Backtrack on Smurfs is facilitated by either saving the current state of

every Smurf at each decision level or maintaining a stack of state changes, components that CNF-

based SAT has been able to massively improve upon through the use of lazy data structures. Once

a collection of Smurfs has been built, something which can be quite computationally expensive,

efficient search can proceed. Pseudo-code outlining how to build a Smurf from a BDD is shown

in Algorithm 2.

Theorem 2.4.1 A Smurf representing a Boolean function can have no more than 3n states, each

corresponding to a partial truth assignment on n variables [66].
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Algorithm 2 CreateSmurf(BDD b)
A cube is a BDD representing a conjunction of literals.
The CoFactor operation takes a BDD b and a literal l and produces b|l.

1: if b.Smurf *= 0 then # If a Smurf already exists for b then just return it
2: return b.Smurf
3: end if

4: for each variable xi ∈ Support(b) do
5: for each li ∈ {xi, xi} do # Create both the positive and negative transitions
6: BDD b|li := CoFactor(b, li)
7: BDD Ib|li := the cube of inferences of b|li
8: BDD b|liIb|li

:= CoFactor(b|li , Ib|li )

9: Sb.transition(li).inferences := Ib|li
10: Sb.transition(li).next := CreateSmurf(b|liIb|li

)

11: end for

12: end for

13: b.Smurf = Sb

14: return Sb

Proof A Smurf’s root has 2n outgoing transitions, each connecting the root to a unique Smurf

state in the worst case. Smurf states at transition level one (after one transition from the root)

have at most 2(n − 1) transitions. Transitioning from the root on a set of literals, regardless of

order, always results in the same Smurf state, e.g. transitioning on a literal x1 then x2 results

in the same Smurf state as transitioning on literal x2 then x1. Hence, the worst-case number of

unique states at level k of a Smurf is the number of sets of k literals drawn from n variables,

namely,
(

n
k

)

2k. Summing up the number of states at each transition level gives:

n
∑

k=0

(

n

k

)

2k.

This is an upper bound on the number of states in a Smurf for a Boolean function, which by

the Binomial theorem is 3n.

Even though this is a one-time cost, it can be prohibitively expensive. Some attempts have been

made to overcome this potentially exponential number of states. Smurfs, as presented in [64–66],

are compressed in a few ways:

1. The Smurf state representing a specific Boolean function is created only once, even though
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that state may exist across several Smurfs.

2. All single literal inferences are memoized on Smurf transitions. Hence, Smurfs maintain

arc-consistency [71], i.e. have maximal implicativity [119].

3. The functions x1 ∨ .. ∨ xk, x1 ⊕ .. ⊕ xk, and x1 ≡ (x2 ∧ .. ∧ xk) (allowing for the arbitrary

negation of variables) can be represented using compact special counter-based Smurfs due

to certain symmetries in these functions [66].

The Smurf data structure also supports the use of advanced heuristics. One such heuristic

is the Locally Skewed, Globally Balanced (LSGB) heuristic [66]. This heuristic is modeled after

the CNF-based Johnson (or Jeroslow-Wang) heuristic [88, 92] and generalized for Smurfs. LSGB

attempts to direct search into early conflicts by causing inferences to happen near the top of the

search tree. This heuristic makes heavy use of the Smurf data structure by performing a full

look-ahead of each Smurf during precomputation and memoizing inference information at each

Smurf state. The heuristic then has immediate access to the memoized inference information

during search.

2.5 Supporting Tools

This section provides descriptions of the three main tools supporting this dissertation, namely

SBSAT, funcsat, and the BDD Visualizer.

2.5.1 SBSAT

Recent interest in problems such as property checking, circuit verification, and circuit synthesis has

led to problem descriptions in new non-clausal formats such as Trace [146] (a SSA language for

hardware verification), AIGER [23] (a format describing And/Inverter Graphs), and a non-CNF

DIMACS format [12] (sometimes referred to as EDIMACS that allows users to specify Boolean

gates as constraints). Problems described in these formats are solved by various means, commonly

involving the use of Boolean formula DAGs [136], Negation Normal Form (NNF) [86] formulas, or
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BDDs (a few references are [51,66,73,78,91]) to represent clusters of connected components6.

SBSAT [64–66, 144], a C-based implementation of a state-based SAT solver, allows the user to

reason about certain non-clausal inputs via support for the Trace and AIGER formats as well as

BDDs, CNF, and various other input formats. SBSAT initially represents each constraint as a BDD.

After an advanced and modular preprocessing phase, Smurfs are constructed from the collection of

BDDs. Finally, a CDCL-based search can be performed (though other solvers, such as a BDD-based

variant on Stochastic Local Search (SLS), come prepackaged as well). SBSAT supports some current

CDCL-based techniques such as conflict clause learning and restarts. However, other CDCL-based

techniques, such as lazy updating of data structures, conflict clause minimization, among others,

have not been implemented in SBSAT, and its performance can lag behind more modern solvers.

This dissertation detail improvements that, when added to SBSAT, enable it to solve the same

problems as modern SAT solvers. In addition, SBSAT has the potential to outperform modern SAT

solvers because it is capable of performing search on more expressive constraint representations than

CNF, enabling future use of more powerful proof systems than those which are resolution-based.

As discussed in Chapter 4 on page 48, Smurf precomputation can be very expensive, depending

on the size of the input BDDs. In practice, it is not feasible to build Smurfs for BDDs with much

more than twelve variables because such a Smurf could need roughly 500, 000 nodes. These

numbers appear to make state-based SAT infeasible, and certainly SBSAT would be a useless SAT

solver if it could not handle constraints with more than twelve variables. SBSAT mitigates this

huge deficiency by building special Smurfs that exploit common symmetries of constraint types

that occur often in practice. By using a combination of general and special Smurfs, SBSAT

can compactly represent large sets of BDDs; BDDs which cannot be represented as CNF without

adding either a significant number of extra variables or clauses (or both), e.g. XOR constraints

and cardinality constraints [13,109]. However, these basic techniques alone are often not powerful

enough to enable successful solving of real world problems7.

6See Section 3.1 on page 30 for information about recovering (ungarbling) user-domain information from input
formulas and Section 3.2 on page 38 for BDD-based clustering techniques in support of finding compact sets of
constraints.

7Chapter 4 on page 48 describes Smurf-based symmetry detection and compression techniques which better
compress and speed up computation on Smurfs and increase the scalability of state-based SAT search.
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SBSAT is written in a highly structured way that makes it easy to implement and test new

techniques. Because of this, many of the techniques proposed here were implemented in SBSAT

and also many of the results were collected using SBSAT.

2.5.2 Funcsat

Funcsat [38], a C implementation of the Haskell-based funsat [39], is a conflict driven, clause learning

SAT solver. It has many execution hooks which allow it to function as a client solver of another

solver. It features cache-aware watched literals and conflict clause pool, any-UIP conflict clause

generation, Glucose-style clause deletion heuristic [11], non-chronological backtracking, and rapid

restarts. Many of these features have tunable parameters in order to better cooperate as a client

solver. Funcsat also functions as an incremental solver, allowing unit assumption literals to be

pushed and popped.

2.5.3 BDD Visualizer

The BDD Visualizer [140], a tool developed as part of this dissertation, generates visualizations of

BDDs. A simple web-based interface to the visualizer is located at:

http://www.cs.uc.edu/~weaversa/BDD_Visualizer.html and is freely available for anyone to

use. The page has, among other things, a text-box and a submit button. Upon clicking the submit

button, two programs, SBSAT [144] and Graphviz [61], interpret the text written in the text-box and

attempt to create graphs of BDDs corresponding to the text. If the text is not formatted correctly,

an error message is displayed. As of this writing, the BDD Visualizer has been used to generate

more than 3000 visualizations8. Other BDD visualization tools exist (see [115] for an overview),

and each has some role to play. Some, such as BDD Scout [115] allow the user to interactively

explore the generated visualization. Another, visBDD [114], has an audio component that speaks

the steps of the ITE algorithm during BDD construction.

The BDD Visualizer is a simple web-based application that, with one button push, will produce

visualizations in any Graphviz supported format, such as PDF or PNG. The BDD Visualizer supports

8This statistic does not include visualizations generated by the developer.
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SBSAT’s canonical form input language, making it easy to express and reorder BDDs. Figures 2.3

and 2.4 provide examples of how to use the visualizer. A derivative of this tool has been created

that visualizes Smurfs instead of BDDs. This dissertation makes heavy use of both of these tools

to help illustrate the various data structures and techniques presented within.

order(x4, x3, x2, x1)

; Create the first BDD

; it can be referred to using $1.

xor(and(x1, x2), and(x1, x3, x4), x4)

; Create the second BDD

; it can be referred to using $2.

xor(x1, x2, x3)

; Print the disjunction of the two BDDs.

print(or($1, $2))

x3

x2

F

x4x4

x1

x3

T

x2

x3 x3

Figure 2.3 — An example demonstrating the use of the BDD Visualizer. Input to the visualizer is given on the
left. The resulting BDD visualization is given on the right. True edges are denoted by solid lines
and False edges by dotted lines.
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order(x1, x2, x3, x4)

; Create the first BDD
; it can be referred to using $1.

xor(and(x1, x2), and(x1, x3, x4), x4)

; Create the second BDD

; it can be referred to using $2.

xor(x1, x2, x3)

; Print the disjunction of the two BDDs.

print(or($1, $2))

x2x2x2

F

x1

x3

x1

x2

T

x4

x3

Figure 2.4 — The same function is visualized as in the previous figure, but under a different BDD variable
ordering.
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Chapter 3

Preprocessing

This chapter presents ideas and extensions needed to perform efficient state-based SAT search on

low-level input languages such as CNF. Specifically, Section 3.1 details ideas and provides results

related to CNF-based pattern matching and clustering and Section 3.2 on page 38 details ideas

and results related to BDD clustering. The techniques discussed in this chapter are all in support

of recovering user-domain information so that intelligent and efficient search can be performed on

expressive Smurfs. The techniques presented here are used to preprocess SAT instances into a

form that is much more amenable to state-based SAT search than, for example, CNF. The success

of state-based SAT search is reliant upon these techniques because, when Smurfs are built directly

from CNF, a state-based SAT solver can’t perform any better than a purely CNF-based SAT solver.

Reverse engineering structure and user-domain constraints, creating clusters from tightly connected

components, and simplifying the clusters by inference, existential quantification, and pairwise BDD

operations all act to massage low-level input into a form that is ripe for use with state-based SAT.

3.1 Structure Recovery

This section provides details for some of the current methods used to recover user-domain informa-

tion from SAT instances in support of better state-based SAT search, and presents new methods

that are complementary to current methods.
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3.1.1 Overview

In practice, SAT instances are generated by encoding user-domain constraints (or components)

into low-level input languages such as CNF and AIGER. The translation process entails high-level

constraints being decomposed into either sets of clauses (in the case of CNF) or into NAND gates (in

the case of AIGER). This is undesirable for two reasons:

1. User-domain information can become garbled, information that may be crucial for efficiently

determining a solution to the original instance.

2. It is common for the encoding process to drastically increase the size of the formula either by

an exponential blow up of the number of constraints, or by adding a polynomial number of

variables. See, for example, the encoding of cardinality constraints into CNF [13,20,63,109].

Recovering user-domain information is important because it can be used to support the devel-

opment of advanced heuristics, faster inference propagation, and earlier discovery of conflicts, all

of which state-based SAT supports. However, the time taken to perfectly recover the structure of

a low-level SAT instance can sometimes outweigh the time taken to solve it. For this reason, it is

often better to approximate the structure of the original formula. This can be done by identifying

and clustering tightly coupled components that are loosely coupled with other components; this

type of structure is very common, e.g. encodings of circuits into SAT. Knowing the circuit struc-

ture of a circuit-based SAT problem allows solvers to make use of recent synthesis and equivalence

checking techniques such as random simulation as applied to AIG structural hashing, a technique

that probabilistically detects stuck-at variables and equivalence relations [105] and can drastically

reduce the solving time of an instance. Also, [67] shows how to use structural hashing [105] and

local observability don’t-cares [15, 151] to optimize a circuit for solving after reverse engineering

circuit structure from CNF. Though circuit structure (typically stemming from verification prob-

lems) is used here to illustrate various clustering methods, clustering can be successfully used in

other domains (see [44] for a simple example). As well, there are many different clustering tech-

niques that have been developed which can be used for structure recovery. Utilizing the right one

for processing a given instance can cause orders of magnitude reduction in both the number of
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variables and constraints in the processed instance. In terms of state-based SAT, understanding

these algorithms and applying them correctly is crucial to building compact state machines that

make use of the domain specific information of the original problem.

One simple way to recover some user-domain constraints is to use pattern matching. Pattern

matching involves reconstructing simple Boolean constraints by matching subsets of clauses against

patterns noticed in their standard CNF representations [67,120] (also see [41] for an And/Inverter

Graph (AIG)-based reconstruction method). Recovering user-domain information can be simple

if the CNF encoding processes are known. However, if Boolean constraints are not encoded into

CNF in an expected way then pattern matching can fail. Fortunately, machines (more often than

people) encode problems into SAT and hence SAT encodings of primitive operations, like logic

gates, have become standardized. For example, instances representing questions about Boolean

circuits commonly contain the following set of Boolean gates encoded into CNF [137]: XOR, AND,

OR, ITE, and MAJV. The Boolean gate x0 = OR(x1, x2, x3) is commonly encoded into the following

set of clauses:

(x0 ∨ x1 ∨ x2 ∨ x3) ∧ (x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (x0 ∨ x3).

Using pattern matching to discover the Boolean OR gate encoded into this CNF formula involves

searching for n two-literal clauses (with certain properties) and a corresponding n literal clause.

However, this pattern matching technique will fail to find the OR gate when given the following

CNF (also encoding x0 = OR(x1, x2, x3), but which is hardly ever found in the wild):

(x0 ∨ x1 ∨ x2 ∨ x3) ∧ (x0 ∨ x1 ∨ x2 ∨ x3) ∧ (x0 ∨ x2 ∨ x3) ∧ (x0 ∨ x3).

There are an overwhelming number of different CNF representations for a given Boolean gate-

type. The reason that the first encoding is preferred is because it is minimal in both the number

of literals and number of clauses needed to represent the function in CNF (not so for the second or

any other encoding of the function). So, though it is not feasible to develop CNF pattern matching

techniques for every encoding of every Boolean gate-type, due to minimality, this is not necessary.

Only a handful of gate encodings need to be considered to be able to use pattern matching to
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successfully recover the structure of the majority of practical SAT problems. However, if pattern

matching fails, more complex clustering techniques can be used to search for sets of clauses that

seem to have a strong relationship. Such clauses can be clustered into one constraint, i.e. by

building a BDD from the set of clauses. As the results presented in Table 3.2 on page 37 show,

clustering can be a remarkably good way of recovering structure that is missed by pattern matching.

3.1.2 Pattern Matching

In [120], pattern matching is implemented using a specialized stack-based pattern matching algo-

rithm for each gate-type. This specialization makes it feasible to recover Boolean gates with a

large number of fan-ins, but makes it time consuming to add new pattern matching algorithms for

future gate encodings. In [67], Boolean gates are recovered from CNF by a single pattern matching

algorithm and a user-definable gate-library. The reported results were gathered using a gate-library

consisting of AND and OR gates up to a fan-in of ten inputs, XOR gates up to a fan-in of four in-

puts, and MAJV gates. The restrictions on gate fan-in exist to make the generic pattern matching

algorithm perform efficiently on standard CNF benchmarks. However, unlike [120], it is relatively

easy to add patterns for new gate-types and the pattern matching algorithm naturally covers all

possible encodings for each gate-type in the library.

Gate recovery has been implemented in SBSAT similar to [120], i.e. specialized pattern matching

algorithms were developed for each desired gate-type. SBSAT can pattern match against AND, OR,

XOR, MAJV, and ITE gates. SBSAT also makes use of an idea from [67], namely, using key clauses to

enhance pattern matching. A key clause is one that contains all of the variables of its corresponding

constraint. It is typical for gate encodings to produce at least one clause containing all the input

and output variables of the gate. This is important because once the key clause has been found, all

other clauses also belonging to the gate have only these variables, reducing the number of clauses

that need to be considered during pattern matching. For example, the gate x0 = OR(x1, x2, x3) has

key clause x0 ∨ x1 ∨ x2 ∨ x3, hence, only clauses with the variables x0, x1, x2, and x3 need to be

considered to know if the above OR gate exists in the CNF formula.

When performing CNF pattern matching, SBSAT first finds all key clauses in the CNF for a
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particular gate-type and then iterates over the key clauses, searching for the set of clauses that

correspond to each key clause for the desired gate-type. For every matching set of clauses found, a

BDD is created for the Boolean gate and the set of clauses is marked for deletion. Marked clauses

are deleted at certain stages of the recovery process. This approach is different than [67] where

key clauses are not deleted until all gates have been matched. Though implementing different

pattern matching algorithms for each gate-type is time consuming, this approach enables gate

specific optimizations that overcome the fan-in restrictions of [67], and is very efficient on real

world problems.

After all gate-types have been processed, SBSAT runs a simple and parameterized clustering

algorithm on the remaining clauses with the goal of discovering constraints for which SBSAT does

not have specific pattern matching algorithms. SBSAT first chooses the longest clause ckey that has

not yet been considered (presuming this to be a key clause of an unknown user-domain constraint)

and builds the set of clauses Cckey containing all clauses with smaller or equal length who’s variables

are a subset (or almost a subset) of ckey. Specifically,

Cckey = {ci : ci ∈ C, |ckey | ≥ |ckey ∪ {ci}|− δ}. (3.1)

Here, the ∪ operator is treating clauses as sets of positive variables rather than sets of literals.

When δ is 0, all clauses in Cckey are subsets of the variables of ckey. If the set Cckey contains more

than just the clause ckey, a new BDD is built by conjoining the clauses of Cckey and then marking

them for deletion.

3.1.3 Experimental Results

Table 3.1 on page 36 show results of the newly introduced CNF reverse engineering methods (with δ

from Equation 3.1 equal to 0) applied to the benchmark sets used in [120] and [67]. The benchmarks

used come from a wide variety of industrial domains such as verification, equivalence checking, and

bounded model checking and also include benchmarks from the crafted categories of previous SAT

competitions [21]. Only AND, OR, and XOR gates are explicitly matched against as any MAJV and
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ITE gates are efficiently recovered by the generic constraint recovery method since they each have a

small fixed number of variables (four per constraint). The results show that the pattern matching

techniques introduced in this chapter always find the same or more gates than prior work, and also

take less time. The compression column given in Table 3.1 on the next page (labeled “Comp.”)

shows the ratio of the original number of clauses to the resulting number of BDDs. The reduction

in the number of constraints is generally between three and four times, though sometimes much

larger. Also, the runtime needed to find even a large number of gates is not prohibitive for either

small or large instances. This means that pattern matching alone can efficiently reduce the number

of constraints of real world problem instances, a major step on the path to creating expressive and

compact Smurfs. For details on how each preprocessed constraint is transformed into a Smurf,

see Chapter 4 on page 48. For experimental results showing the effects that preprocessing has on

state-based SAT search, see Section 5.1.2 on page 76.

Pattern matching techniques can also be used to find other common Boolean formulas. Cardi-

nality constraints are useful constraints commonly found in SAT instances. A cardinality constraint

is a Boolean function of the form:

min ≤ x1 + ..+ xk ≤ max

wheremin andmax are positive integers, x1..xk are Boolean variables, and the constraint is satisfied

if the number of Boolean variables taking the value True is greater than or equal to min and less

than or equal to max.

Cardinality constraints are much more expressive than other common Boolean constraints, and

as such, developing a specialized CNF-based pattern matching algorithm is difficult. In contrast

to XOR constraints, there is hardly any work on the recovery of cardinality constraints from CNF

formulas. However, the key clause clustering method (described earlier, Equation (3.1) on the

preceding page) can recover cardinality constraints from CNF input. This method was tested on

the unsatisfiable Sgen [133] benchmarks (from the SAT-2009 competition [21]) that consist of sets

of cardinality constraints encoded into CNF. The methods introduced in this chapter completely
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Table 3.1 — Results of this chapter’s CNF reverse engineering methods on benchmarks of [120] and [67].

Instance
Number
Clauses

Number
Variables

Number
XORs

Number
∧/∨ Gate

Number
Unknown

Number
Unit

Clauses
Leftover

Comp. Time(s)

par8-1-c 254 64 56 15 0 0 0 3.57 0.01
par8-1 1149 350 240 80 0 43 80 2.59 0.01
par16-1-c 1264 317 270 61 0 0 31 3.49 0.01
par16-1 3310 1015 768 192 0 76 192 2.69 0.01
par32-1-c 5254 1315 1158 186 0 0 125 3.57 0.01
par32-1 10277 3176 2624 448 0 141 448 2.80 0.02

barrel5 5383 1407 1065 152 0 0 701 2.80 0.01
barrel6 8931 2306 1746 254 0 0 1153 2.83 0.02
barrel7 13765 3523 2667 394 0 0 1765 2.85 0.02
barrel8 20083 5106 3864 578 0 0 2561 2.86 0.03
barrel9 36606 8903 7164 812 0 0 4456 2.94 0.05

ssa2670-130 3321 1359 883 271 44 4 461 1.99 0.01
ucsc-bf1355-348 7271 2286 1190 468 440 4 2510 1.57 0.01
dubois100 800 300 200 0 0 0 0 4.00 0.01

dlx1 c 1614 287 0 216 67 0 2 5.66 0.01
1dlx c mc ex bp f 3725 766 1 565 178 1 0 5.00 0.01
dlx2 cc bug18 20208 2043 0 1 1905 0 4 10.58 0.21
2dlx ca mc ex bp f 24640 3186 1 2466 782 1 0 7.58 0.03
2dlx cc mc ex bp f 41704 4524 1 3610 1034 1 0 8.97 0.06
2dlx cc...f2 bug019 48232 4824 1 3762 2563 1 0 7.62 0.07
9vliw bp mc 179492 19148 1 15369 2326 1 0 10.14 0.26

c499 1870 606 352 213 0 1 0 3.30 0.01
3bitadd 32 32316 4480 0 0 0 0 32316 1.00 0.14
x1.1 16 122 46 31 0 0 0 0 3.93 0.01
x2 128 1018 382 255 0 0 0 0 3.99 0.01
longmult12 18645 5974 1569 4351 0 47 0 3.12 0.03
longmult14 22389 7176 1805 5317 0 51 0 3.12 0.03
longmult15 24351 7807 1923 5830 0 53 0 3.11 0.04
ibm...3 02 3-k95 272059 73525 11836 56042 88 281 1053 3.92 0.37
ibm...23-k100 861175 207606 16398 186625 0 692 1170 4.20 1.19

hanoi6 39666 4968 0 1890 3402 1005 16677 1.72 0.07
Mat26 2464 744 256 480 0 0 0 3.34 0.01
Mat317 85050 24435 10935 13770 0 0 0 3.44 0.13
linvrinv8 6337 1920 896 960 0 0 1 3.41 0.01
linvrinv9 9154 2754 1296 1377 0 0 1 3.42 0.02
equilarge l5 18519 4478 4167 856 2 0 248 3.51 0.03
pyh...unsat-40-4-01 31795 9638 3199 6358 0 83 0 3.29 0.05
clauses-2 272784 75527 5413 69152 192 1 0 3.64 0.44
clauses-4 1002957 267766 19600 246116 432 1 0 3.76 1.78
clauses-6 2623082 683995 47453 632996 768 1 0 3.85 5.05
clauses-8 5687554 1461771 94441 1361880 1200 1 0 3.90 11.63
clauses-10 8901946 2270929 147877 2115466 1552 1 0 3.93 18.89
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Table 3.2 — Results of this chapter’s CNF reverse engineering methods on the Sgen benchmarks.

Instance
Number
Clauses

Number
Variables

Number
Cardinality

Clauses
Leftover

Comp. Time(s)

sgen1-unsat-61-100 132 61 30 0 4.40 0.017
sgen1-unsat-73-100 156 73 36 0 4.33 0.017
sgen1-unsat-85-100 180 85 42 0 4.28 0.017
sgen1-unsat-97-100 204 97 48 0 4.25 0.018
sgen1-unsat-103-100 220 105 52 0 4.23 0.018
sgen1-unsat-109-100 228 109 54 0 4.22 0.018
sgen1-unsat-115-100 244 117 58 0 4.20 0.018
sgen1-unsat-121-100 252 121 60 0 4.20 0.018
sgen1-unsat-127-100 268 129 64 0 4.18 0.018
sgen1-unsat-133-100 276 133 66 0 4.18 0.018
sgen1-unsat-139-100 292 141 70 0 4.17 0.018
sgen1-unsat-145-100 300 145 72 0 4.16 0.019
sgen1-unsat-151-100 316 153 76 0 4.15 0.019

Table 3.3 — Results of this chapter’s CNF reverse engineering methods on the sliding window benchmarks.

Instance
Number
Clauses

Number
Variables

Number
Unknown

Clauses
Leftover

Comp. Time(s)

slider 40 sat.cnf 840 39 40 0 21.00 0.02
slider 40 unsat.cnf 720 39 40 0 18.00 0.02
slider 60 sat.cnf 1260 59 60 0 21.00 0.02
slider 60 unsat.cnf 1980 59 60 0 33.00 0.03
slider 70 sat.cnf 1470 69 70 0 21.00 0.02
slider 70 unsat.cnf 2310 69 70 0 33.00 0.03
slider 80 sat.cnf 1680 79 80 0 21.00 0.02
slider 80 unsat.cnf 2640 79 80 0 33.00 0.04
slider 100 sat.cnf 2100 99 100 0 21.00 0.03
slider 100 unsat.cnf 3300 99 100 0 33.00 0.04
slider 120 sat.cnf 2520 119 120 0 21.00 0.03
slider 120 unsat.cnf 3960 119 120 0 33.00 0.05

and automatically recover the cardinality constraint representation exactly as it is described in

the Sgen benchmark generation paper [133]. Results for Sgen cardinality constraint recovery are

presented in Table 3.2.

The key clause clustering method can also recover more generic constraints from CNF input.

Table 3.3 shows SBSAT completely and automatically recovering the original structure of the “slid-

ing window problems” of [65,66]. These benchmarks are crafted problems that model key properties

of Bounded Model Checking problems and consist of a handful of small random Boolean constraints

with balanced truth tables.
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3.2 BDD Clustering

The previous section showed how to efficiently reverse engineer some common Boolean constraints

from CNF. The next preprocessing technique explored here is BDD clustering. This section presents

improved BDD clustering techniques and methods that work in support of state-based SAT search

by creating BDDs that can be transformed into expressive and compact Smurfs.

3.2.1 Overview

Though there has been a lot of research into different heuristics for BDD clustering , the generic

processes of clustering BDDs is relatively simple. As earlier discussed in Section 2.3 on page 18,

BDD clustering is the ordered pairwise conjoining (logical AND) of an implicit conjunction of BDDs.

Also, variables can be existentially quantified away when they become isolated in a single BDD.

When used in this manner, existential quantification (see Definition 2.3) does not change the

satisfiability of the conjunction of BDDs. The process of interleaving existential quantification

and BDD clustering is called Early Quantification [40, 74]. The first step in performing Early

Quantification on a conjunction of BDDs ϕ is to create a quantification schedule (an ordering of

the variables of ϕ). This schedule is used to guide clustering by specifying the order in which

each variable will be quantified away. To follow a quantification schedule, first choose a variable

x according to the schedule, conjoin all the BDDs that x occurs in, existentially quantify away

x, and repeat. This type of clustering is typically referred to as either Conjunction Scheduling or

Quantification Scheduling (mainly in the context of Image Computation). Constraints such as “if

a BDD has more than 10 variables, do not consider it again during clustering” can also be levied

during Conjunction Scheduling.

Many heuristics to choose good quantification schedules have been conceived over the years.

Some such heuristics are Dtree [52, 53, 84], FineGrain [89–91], Force [4], Mince [2, 5], and

VarScore [42]. Good heuristics are necessary to help avoid the exponential blowup in the number

of BDD nodes while conjoining BDDs.

To give an example, one possible circuit-based SAT clustering heuristic is to cluster low-level

gates, each represented as a BDD, generating a new set of complex gates (also BDDs), such that the
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fanout of each gate-output equals one [86] (see Figure 3.1 on the following page for a step-by-step

example). Clustering in this way produces a conjunction of BDDs where every non-input variable

occurs in at most two BDDs, once as an input variable and once as an output variable.

BDD clustering can be further enhanced by interleaving specialized pairwise BDD operations

between BDD conjunction steps. There are many different pairwise BDD simplification operations,

most notably Restrict [48], Constrain [48], Strengthen [141], Li-Compaction [80], among

others (some are described in Section 2.3 on page 18). Their intent is to share partial information

between pairs of BDDs, simplifying the conjunction of BDDs along the way. With state-based SAT

in particular, the goal of clustering BDDs is to support search on Smurfs. Experience with SBSAT

suggests that state-based SAT can be enhanced by preprocessing the instance into a small number

of relatively compact and independent Smurfs, though this may not always be possible. However,

there are a number of reasons clustering is essential for state-based SAT search, among them are

the following:

1. Specialized heuristics can be developed that exploit the presence of compact and loosely

coupled Smurfs.

2. Compact Smurfs can produce more useful conflict clauses (see Section 5.1.1 on page 68.

3. BCP is strengthened (inferences are discovered earlier).

4. BCP is more efficient. In fact, since clustering can result in a set of constraints that are

drastically reduced in number and use less variables than the original CNF, BCP is sometimes

much faster than using lazy data structures (such as watched pointers) on the original CNF.

And, this speed up can be done without compromising on the ability to compute complex

heuristics that require full information about the state of the instance under the current

partial assignment.

3.2.2 Variable Elimination

Conjunction Scheduling can be performed using Variable Elimination (Ve). Ve originally of [56]

and tailored to BDDs in [82,84] performs parameterized bucket-based BDD clustering according to
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Figure 3.1 — An example illustrating one of the many possible clustering schedules for this specific And/Inverter
Graph (AIG), a circuit constructed out of only AND and NOT gates. First, gates 7 and 8 are clustered,
decreasing the output fanout for gate 3. Next, gates 4 and 5 are clustered, decreasing the output
fanout for gate 2. Finally, node 6 is clustered into the 4, 5 gate-cluster, decreasing the output fanout
for both gate 1 and gate-cluster 4, 5. Clustering stops at this point because every output has a fanout
of one.
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a given quantification schedule. In [93], Ve was enhanced so that the order in which BDDs are clus-

tered resembles a tree. This algorithm, named Ve-Tree (Algorithm 3), was shown to outperform

Ve. To support state-based SAT (which can rely heavily on clustering as a preprocessing step) a

new algorithm named Ve-TreeIter, given in Algorithm 4, is introduced here that iteratively calls

Ve-Tree with an extra parameter: a limit on the number of new BDD nodes that can be created

while conjoining BDDs. Ve-TreeIter increases this limit with every call to Ve-Tree. Using a

small number of iterations allows the clustering process to proceed quickly, skipping over cluster-

ing BDDs that would cause the conjunction to explode, but still greatly reducing the number of

both BDDs and variables by first removing the low-hanging fruit. Letting the number of iterations

be infinite causes the clustering process to become complete, meaning the monolithic BDD will

be built, solving the conjunction of BDDs. A parameterized version of Ve-TreeIter has been

implemented in SBSAT (and SBSAT is using the CUDD BDD package [130] to manage BDDs).

Heuristics to generate quantification schedules have also been implemented in SBSAT, namely

Static, Force [4], VarScore [42], Random, Cudd, Overlap, and Optimal. The Static

heuristic is the simplest heuristic (used to provide a baseline). It orders the variables according to

their position in the original CNF input. The Force heuristic is “a fast and easy-to-implement

variable-ordering heuristic” [4] that attempts to produce an ordering such that variables often

occurring together in a constraint occur near each other in the ordering. This is done by iteratively

refining the ordering such that the sum of the span of each BDD is reduced. Shown in Algorithm 5,

the span of a BDD is the difference between the smallest and greatest variables in the BDD according

to a given ordering. The VarScore heuristic chooses a variable ordering according to the sum of

the number of nodes of the BDDs each variable occurs in, the less nodes the better. The Random

heuristic chooses a random ordering. The Cudd heuristic orders the variables to match CUDD’s

own internal BDD variable ordering. The Overlap heuristic orders the variables according to the

number of BDDs each variable occurs in, less is better (this is similar to what was done in [143]).

The Optimal heuristic computes the total span [4] (the sum of the spans of every BDD) of each

of the above heuristic orderings and uses the ordering with the lowest total span. Both Force and

VarScore are the latest in a long line of BDD clustering heuristics. Surprisingly, they are both
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Algorithm 3 Ve-Tree(BddManager, ClusterHeuristic, limit)
ClusterBdds places the conjunction of BDDs at positions b0 and b1 at b0 and shifts remaining
BDDs to fill the newly empty b1 position

1: order := ClusterHeuristic(BddManager)
2: for k := 0 to NumberOfVariables(BddManager) do
3: v := order[k]
4: position := 0
5: while NumberOfBdds(BddManager, v) > 1 do

6: if (position + 1) ≥ NumberOfBdds(BddManager, v) then
7: position := 0
8: end if

9: b0 := BddPosition(BddManager, v, position)
10: position := position+ 1
11: b1 := BddPosition(BddManager, v, position)
12: exception := ClusterBdds(BddManager, b0, b1, limit)
13: if exception = limit reached then

14: break

15: else if exception = unsatisfiable then

16: return unsatisfiable

17: end if

18: end while

19: end for

20: if NumberOfBdds(BddManager) ≤ 1 then

21: return satisfiable

22: end if

23: return unknown

Algorithm 4 Ve-TreeIter(BddManager, ClusterHeuristic, iterations)

1: limit := 0
2: for i := 0 to iterations do

3: returnV alue :=Ve-Tree(BddManager, ClusterHeuristic, limit)
4: if returnV alue *= unknown then

5: return returnV alue
6: end if

7: limit := 1 + (limit ∗ 2)
8: end for

9: return unknown
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very easy to implement compared to their predecessors.

Algorithm 5 Span(b, order)
1: min := ∞
2: max := 0
3: if IsConstant(b) then
4: return 0
5: end if

6: for each variable vi in Support(b) do
7: if ordervi < min then

8: min := ordervi
9: end if

10: if ordervi > max then

11: max := ordervi
12: end if

13: end for

14: return max−min

3.2.3 Experimental Results

Table 3.4 on the next page shows results of Ve-TreeIter (as implemented in SBSAT) solving

benchmarks used in [93]. Specifically, SBSAT is configured to run 4 different ways. The structure

recovery methods described in Section 3.1 on page 30 either are or are not used to reverse engineer

Boolean constraints from the CNF. Also, Ve-TreeIter is run with a high number of iterations

and with either the Static heuristic or the Force heuristic. The results of two other solvers,

Lingeling [25] (a recent competitive CDCL solver) and EBDDRES [26, 93] (a BDD-based solver

configured to perform Ve-Tree with the Force heuristic1) are also shown. Limits of 600 seconds

and 2 GiB of RAM were used.

Many of the benchmarks used in Table 3.4 on the next page are known to be exponentially

hard for resolution (this is hinted at in the results of Lingeling). Hence, they are good candidates

for showing the usefulness of solvers that naturally make use of stronger proof systems, such as

BDD-based solvers [9]. However, just because a solver can make use of a stronger proof system to

solve a problem doesn’t mean it will. For example, both EBDDRES and SBSAT (when configured

to perform Ve-TreeIter without recovering the garbled circuit structure) exhibit exponentially

1To increase performance, the trace generation feature of EBDDRES was disabled when collecting these results.
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Table 3.4 — Results of this chapter’s BDD clustering methods solving benchmarks of [93].

SBSAT running Ve-TreeIter

Without Gate Recovery With Gate Recovery

Lingeling EBDDRES Static Force Static Force

Instance Clauses Vars Time Time Mem Time Mem Time Mem Time Mem Time Mem

add4 60 157 0.00 0.00 1 0.03 27 0.03 27 0.03 27 0.03 27
add8 149 400 0.00 0.00 1 0.03 28 0.03 28 0.03 28 0.03 28
add16 330 895 0.02 0.01 2 0.04 29 0.04 29 0.04 28 0.04 28
add32 695 1894 0.05 0.05 7 0.05 31 0.07 32 0.04 30 0.05 30
add64 1428 3901 0.17 1.33 93 0.10 38 0.13 41 0.07 34 0.09 34
add128 2282 6586 0.24 40.34 - 1.14 206 3.11 371 0.52 107 0.40 101

fpga108 120 448 0.00 0.68 56 70.72 1248 5.27 220 0.72 59 0.36 55
fpga109 135 549 0.00 1.04 84 49.83 1228 84.78 792 0.92 67 0.50 60
fpga1211 198 968 0.00 13.85 896 - 1640 - 1732 8.90 423 7.85 441

mutcb3 8 19 0.00 0.00 1 0.03 27 0.03 27 0.03 27 0.03 27
mutcb4 20 56 0.00 0.00 1 0.03 27 0.03 27 0.03 27 0.03 27
mutcb5 36 107 0.00 0.00 1 0.03 27 0.03 27 0.03 27 0.03 27
mutcb6 56 172 0.00 0.00 1 0.03 27 0.03 27 0.04 27 0.03 27
mutcb7 80 251 0.01 0.00 1 0.03 28 0.03 28 0.04 27 0.03 27
mutcb8 108 344 0.01 0.00 1 0.03 28 0.03 28 0.04 28 0.04 28
mutcb9 140 451 0.09 0.01 2 0.05 30 0.06 30 0.04 28 0.04 28
mutcb10 176 572 0.17 0.02 3 0.08 32 0.05 30 0.05 29 0.04 28
mutcb11 216 707 0.90 0.04 7 0.06 32 0.09 33 0.06 31 0.08 31
mutcb12 260 856 2.10 0.09 13 0.15 37 0.08 31 0.11 33 0.07 32
mutcb13 308 1019 33.93 0.16 19 0.21 55 0.13 33 0.13 34 0.10 32
mutcb14 360 1196 71.97 0.33 37 0.22 57 0.31 57 0.14 36 0.13 34
mutcb15 416 1387 - 0.58 53 0.82 95 0.55 60 0.14 53 0.22 55
mutcb16 476 1592 - 1.25 106 0.32 62 0.16 53 0.22 57 0.11 34
mutcb17 540 1811 - 1.94 148 0.30 63 0.17 53 0.22 58 0.30 53

ph2 6 9 0.00 0.00 1 0.03 27 0.03 27 0.03 27 0.03 27
ph3 12 22 0.00 0.00 1 0.03 27 0.03 27 0.03 27 0.03 27
ph4 20 45 0.00 0.00 1 0.03 27 0.03 27 0.04 27 0.03 27
ph5 30 81 0.00 0.00 1 0.03 27 0.04 27 0.03 27 0.03 27
ph6 42 133 0.01 0.00 1 0.04 27 0.04 28 0.04 27 0.03 27
ph7 56 204 0.13 0.02 4 0.07 29 0.07 30 0.04 27 0.04 27
ph8 72 297 0.36 0.10 14 0.05 29 0.12 31 0.04 28 0.04 28
ph9 90 415 1.65 0.54 56 0.10 31 0.36 34 0.04 28 0.04 28
ph10 110 561 - 1.88 132 4.04 108 0.94 54 0.05 29 0.05 29
ph11 132 738 - 6.59 448 11.32 186 4.01 197 0.07 30 0.06 30
ph12 156 949 - 22.75 1344 336.92 610 18.33 198 0.10 31 0.07 31
ph13 182 1197 - 39.59 - - 1141 93.97 566 0.13 31 0.12 31
ph14 210 1485 - 40.92 - - 1564 - 1355 0.21 32 0.18 32
ph15 240 1816 - 43.06 - - 1548 - 1938 0.82 33 0.14 33
ph16 272 2193 - 42.37 - - 1673 - 1111 0.49 34 0.18 34

urq35 46 470 523.96 0.00 1 0.04 28 0.07 30 0.03 27 0.03 27
urq45 74 694 - 0.01 1 3.47 191 0.13 32 0.03 27 0.03 27
urq55 121 1210 - 0.01 1 585.41 - 0.24 37 0.03 27 0.03 27
urq65 180 1756 - 0.02 2 105.61 - 0.58 56 0.04 28 0.04 28
urq75 240 2194 - 0.03 3 254.62 - 60.85 750 0.04 28 0.04 28
urq85 327 3252 - 0.05 6 139.02 - 201.36 - 0.04 28 0.04 28
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increasing solving times on some of these benchmark families, even though polynomial sized BDD-

based proofs exist for those benchmark families. One way to coax the BDDs into these shorter

proofs seems to be to make use of the user-domain information of the original instances. Such

information is gained here by reverse engineering Boolean constraints from the CNF. Once this

is done, Ve-TreeIter naturally finds the short BDD proofs. This is evidenced in the final four

columns of Table 3.4 on the preceding page. These four columns show that exploiting user-domain

information can provide orders of magnitude improvement in solving time. Though, recovering

user-domain information is not the only important process. As can be seen in Table 3.5 on the

next page, both the clustering heuristic and inference discovery can have a large impact.

Table 3.5 on the following page shows results of this chapter’s BDD clustering methods prepro-

cessing benchmarks of [120] and [67]. Specifically, SBSAT recovers Boolean constraints from the

CNF and runs only one iteration of Ve-TreeIter with either the Force heuristic, the VarScore

heuristic, or the VarScore heuristic combined with automatic inference and equivalence discovery

and application. The inference and equivalence discovery and application that have been integrated

into SBSAT are similar to what has been done in [64–66].

Finally, Table 3.6 on page 47 shows results of SBSAT using the clustering methods presented in

the chapter to solve the unsatisfiable Sgen [133] benchmarks from the SAT-2009 competition [21].

Specifically, SBSAT was configured to recover Boolean constraints from the CNF and execute Ve-

TreeIter with no limit on the number of iterations. Ve-TreeIter used the Overlap heuristic

and the Group Sift variable reordering method of CUDD. Also shown are results of EBDDRES,

PicoSAT, and Glucose. Both PicoSAT [24] and Glucose [11] are modern CDCL solvers. Limits of

15000 seconds and 16 gigabytes of RAM were used.

3.3 Summary

Pattern matching methods can be used to successfully reverse engineer some common Boolean con-

straints from CNF, generating a conjunction of BDDs that more closely resembles the constraints as

they would be represented in the user-domain. Those BDDs can then be clustered using algorithms

such as Ve-TreeIter configured to use one of the latest BDD clustering heuristics such as Force
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Table 3.5 — Results of SBSAT’s BDD clustering methods preprocessing benchmarks of [120] and [67].

Force VarScore VarScore + Infs

Instance Clauses Vars Time BDDs Vars Time BDDs Vars Time BDDs Vars

par8-1-c 254 64 0.01 0 0 0.01 0 0 0.02 0 0
par8-1 1149 350 0.04 14 65 0.02 11 47 0.03 0 0
par16-1-c 1264 317 0.02 24 74 0.04 11 37 0.04 11 37
par16-1 3310 1015 0.06 37 161 0.06 38 151 0.05 9 32
par32-1-c 5254 1315 0.08 56 178 0.06 49 165 0.06 49 164
par32-1 10277 3176 0.18 134 422 0.14 203 545 0.12 78 176

barrel5 5383 1407 0.14 250 507 0.06 252 343 0.07 253 343
barrel6 8931 2306 0.19 492 805 0.12 408 527 0.11 408 526
barrel7 13765 3523 0.29 652 950 0.18 695 758 0.19 716 758
barrel8 20083 5106 0.98 1004 1440 0.24 1031 1050 0.26 1037 1049
barrel9 36606 8903 1.25 2118 2049 0.62 2184 1667 0.56 2193 1670

ssa2670-130 3321 1359 0.11 42 248 0.08 15 76 0.04 9 68
ucsc-bf1355-348 7271 2286 0.29 147 564 0.20 313 553 0.10 157 381
dubois100 800 300 0.02 0 0 0.01 0 0 0.01 0 0

dlx1 c 1614 287 0.04 34 161 0.02 30 110 0.02 30 110
1dlx c mc... 3725 766 0.05 122 437 0.04 93 298 0.05 90 279
dlx2 cc bug18 20208 2043 0.51 682 1421 0.34 684 1220 0.33 684 1220
2dlx ca mc... 24640 3186 0.24 933 1984 0.14 872 1632 0.16 873 1620
2dlx cc mc... 41704 4524 0.31 1665 3141 0.26 1572 2653 0.26 1554 2598
2dlx cc...bug019 48232 4824 0.55 2409 3382 0.36 2345 2957 0.35 2362 2913
9vliw bp mc 179492 19148 2.19 6603 13163 1.10 6576 11115 1.19 6597 11113

c499 1870 606 0.04 42 181 0.02 18 105 0.03 16 102
3bitadd 32 32316 4480 1.42 14281 4480 0.74 16842 4480 0.67 16837 4480
x1.1 16 122 46 0.02 0 0 0.02 0 0 0.01 0 0
x2 128 1018 382 0.03 14 122 0.01 9 120 0.01 9 120
longmult12 18645 5974 0.61 274 1624 0.23 250 926 0.24 209 853
longmult14 22389 7176 0.69 335 1776 0.26 319 1214 0.28 279 1091
longmult15 24351 7807 1.08 359 1769 0.33 342 1341 0.38 323 1206
ibm...3-k95 272059 73525 12.24 5459 27534 4.72 4692 14296 4.94 4241 14031
ibm...23-k100 861175 207606 40.84 15271 59290 23.63 11547 35897 21.12 11399 33838

hanoi6 39666 4968 2.40 6738 3809 1.74 5199 2946 1.56 4989 2680
Mat26 2464 744 0.10 90 326 0.06 64 138 0.06 61 132
Mat317 85050 24435 6.27 3333 5969 3.52 2845 3630 3.75 2742 3631
linvrinv8 6337 1920 0.28 226 753 0.08 184 293 0.08 184 293
linvrinv9 9154 2754 0.44 268 980 0.11 270 395 0.12 270 395
equilarge l5 18519 4478 0.37 292 540 0.15 338 499 0.12 341 506
pyhala...4-01 31795 9638 3.99 657 2396 2.29 453 1819 1.91 475 1678
clauses-2 272784 75527 30.40 12745 26860 14.13 9296 16917 7.37 7448 7369
clauses-4 1002957 267766 122.63 44850 100635 62.78 44307 83260 46.18 46237 32166
clauses-6 2623082 683995 481.81 169476 321958 310.97 163142 259036 206.94 164495 99148
clauses-8 5687554 1461771 923.84 283988 691547 873.81 428687 660173 894.57 216914 243802
clauses-10 8901946 2270929 2515.96 453311 1082341 2402.37 547964 1041582 3390.55 361123 400521
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Table 3.6 — Results of the clustering methods presented in this chapter solving the unsatisfiable Sgen bench-
marks.

Instance
Number
Clauses

Number
Variables

PicoSAT
Time

Glucose
Time

EBDDRES
Time

SBSAT
Time

sgen1-unsat-61-100 132 61 0.80 2.31 0.16 0.05
sgen1-unsat-73-100 156 73 5.70 24.44 1.63 0.08
sgen1-unsat-85-100 180 85 68.60 1009.82 6.12 0.14
sgen1-unsat-97-100 204 97 1971.50 4774.21 222.89 0.32
sgen1-unsat-103-100 220 105 10221.40 - - 1.08
sgen1-unsat-109-100 228 109 - - 247.32 2.72
sgen1-unsat-115-100 244 117 - - - 31.84
sgen1-unsat-121-100 252 121 - - 132.23 3.14
sgen1-unsat-127-100 268 129 - - - 436.31
sgen1-unsat-133-100 276 133 - - - 3478.60
sgen1-unsat-139-100 292 141 - - - 5829.93
sgen1-unsat-145-100 300 145 - - - 201.64
sgen1-unsat-151-100 316 153 - - - 7732.34

or VarScore. The clustering process can be assisted by interleaving pairwise BDD reductions

methods such as Restrict and inference discovery and application.

The processes introduced in this chapter can be used to solve families of problems that are

intractable for resolution-based SAT solvers. However, the focus of this dissertation is in using this

process as a preprocessing phase with the goal of creating expressive and compact Smurfs that

can be exploited by heuristic and inference routines during state-based SAT search. Of course,

it is difficult to really test how much these preprocessing methods assist state-based SAT search

without a state-based SAT solver. In support of this, the state-based SAT search of SBSAT was

enhanced. Chapter 4 on the following page discusses enhancements to the Smurf data structure

and Chapter 5 on page 66 discusses state-based SAT solving. Both chapters present results showing

that the preprocessing techniques presented in this chapter perform well in transforming CNF input

into a collection of BDDs that are ripe for use with state-based SAT.
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Chapter 4

State Machine Precomputation

The central component of state-based SAT is the Smurf (State Machine Used to Represent a

Function). This chapter explores the limits of Smurf precomputation and compression. Precom-

putation makes information readily available during search. This is different than preprocessing

(earlier discussed in Chapter 3 on page 30) which massages and streamlines constraints in support

of precomputation. The methods presented in this section aim to make state-based SAT search

more efficient through the use of special Smurfs, subgraph isomorphism detection, and lazy Smurf

computation. All of these methods help state-based SAT solvers scale to industrial sized instances

and enable the use of special purpose solvers, goals that were not previously being met.

Section 4.1 on the next page presents previously known special Smurf representations as well

as introduces new special Smurf representations that exploit many different properties of Boolean

functions. Special Smurfs are important because they are essentially compressed Smurf repre-

sentations of common Boolean functions that have very large uncompressed (or general) Smurf

representations. Instances whose general Smurfs could not even previously be built (because the

general Smurfs are too memory intensive for today’s computers) can now be solved by using special

Smurfs. Section 4.2 on page 58 briefly discusses how general Smurfs and special Smurfs can be

used together to see even more compression. Section 4.3 on page 58 introduces Smurf normaliza-

tion, another kind of Smurf compression technique that decreases the size of the entire collection

of Smurfs by increasing the amount of state sharing between Smurfs. A technique for relaxing
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Smurf precomputation is introduced in Section 4.4 on page 61, namely constructing Smurfs on

demand. Finally, results are presented showing the effectiveness of the new methods presented in

this chapter.

4.1 Special Smurfs

This section presents variations on the Smurf data structure that support domain specific opera-

tions and efficient construction and search on Smurfs1.

It is possible to compress the Smurf representation of certain Boolean functions while main-

taining arc-consistency [71, 119] (i.e. maximal implicativity) and efficient heuristic computation.

Compressed, or special Smurfs [66] (templates for certain types of constraints) can better aid search

operations, such as inference detection and heuristic computation, than general Smurfs. Special

Smurfs also help state-based SAT support specialized theory solvers because special Smurfs can

be constructed to support constraints specific to theory solvers (see Section 5.2 on page 81 for more

results on this topic).

It is often the case that a special Smurf will use orders of magnitude less space than a general

Smurf. In fact, some special Smurfs are even more compact than their corresponding BDDs.

There are many commonly used Boolean functions where a compact Smurf representation is

unknown, but is likely to exist. Finding such functions and building special Smurf representations

for them would enable state-based SAT solvers to solve problems that could not be solved otherwise,

e.g. because the number of Smurf states needed exceeds the memory limit of today’s computers.

The special Smurfs shown in Figure 4.1 on page 51, Figure 4.3 on page 56, Figure 4.4 on page 57,

Figure 4.5 on page 59, and Figure 4.6 on page 60 are graphical representations of simple Boolean

functions encoded as both general and special Smurfs. These figures help to illustrate both the

great complexity of general Smurfs and the benefits of special Smurfs. The Smurf visualizations

used in this chapter were produced automatically by SBSAT and the BDD Visualizer. As such,

the special Smurf visualizations provided here are generalizations of the underlying Smurf data

structure. For example, OR Smurf visualizations display a subset of the variables as indices, whereas

1Background on the Smurf and its definition is given in a previous section, Section 2.4 on page 22
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negation of variables is not displayed.

As reported in [66], one exploitable property of some Boolean functions that supports special

Smurfs involves a type of symmetry that can be modeled with counters. For example, disjunction

is associative, meaning that the functionality of a clause does not depend on the order in which its

literals occur. A clause exhibits a type of symmetry similar to a symmetric Boolean function [145]

but on a consistent permutation of literals (not variables) [108]. This symmetry allows a clause to

be modeled as a state machine that, during search, maintains a count of the number of unset literals

in the clause. If any literal is assigned the value True then the state machine transitions to True,

otherwise the count is decremented. If the count becomes one, the lone unset literal is inferred.

Figure 4.1 on the following page shows two examples where this type of symmetry exploitation

considerably decreases the size of Smurfs. The next sections introduce both previously known and

new special Smurfs.

4.1.1 OR Smurfs

The first special Smurf presented here represents a single clause of n literals (see the lower left of

Figure 4.1 on the next page). This special Smurf is called the OR Smurf and was briefly introduced

in [65,66]. It represents an n literal clause and uses only n+ 1 Smurf states, whereas the general

Smurf needs 2n − n states2. This special Smurf becomes necessary when solving CNF problems

with long clauses (say, clauses with more than 12 literals).

In support of efficient BCP, OR Smurfs have recently been refined to use 3 separate state types,

namely, counter states, inference states, and the terminal state (the True state). A counter state

is a state that cannot infer any literal and only acts to keep one or more counts of important state

variables. For a clause, one count is kept, namely, a count of the current number of unset literals

of the clause. There are two transitions out of the OR counter state. The first transitions to the

True state and is followed when a literal in this special Smurf is inferred to True. The second

transition is taken when a literal in this special Smurf is inferred to False and leads to either the

2It may seem odd to those readers familiar with CNF that a simple clause has an exponential representation.
This is also the case in other domains, for example, clauses also have an exponential representation in Algebraic
Normal Form (ANF), so called, Zhegalkin polynomials. Whereas those familiar with ANF may think it odd that
XOR constraints (which are linear in ANF) have an exponential representation in CNF.
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Figure 4.1 — This figure illustrates that a high level of Smurf compression is achievable by exploiting symme-
tries in some Boolean functions. The first two state machines are general Smurfs representing the
Boolean functions x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 and x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5, respectively. Also shown
are the same functions represented by special Smurfs.
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next counter state or the inference state. An inference state is one that can infer literals, and in

the case of an OR Smurf there is only one inference state. When transitioning from an inference

state, it may be necessary to perform a search to determine which literals need to be inferred. For

OR Smurfs, this is a linear search though the list of literals of the associated clause to find the one

remaining unset literal to infer.

This hints at the following: when inferences are memoized on general Smurf transitions, no

computation is needed to deduce which inference to infer. With special Smurfs, some precompu-

tation is foregone to save memory at the cost of more computation during search. This is a game

of trading time for space. By relaxing precomputation, some amount of computation will be added

during each node of the (potentially exponential) search tree, and vice versa.

This trade-off manifests itself in many SAT problem instances. One such example is the

slider 100 unsat.cnf benchmark of [66]. The preprocessed form of this benchmark can make use

of both general and special Smurfs. When solved using SBSAT with special Smurfs, total solver

time is noticeably increased versus solving without using special Smurfs (27.6s versus 21.4s, with

identical search trees). Likewise, solving the dlx1 c.cnf benchmark of [138] with special Smurfs

takes noticeably less time than without (0.1s versus 6.0s). In the case of the first benchmark,

precomputation both with and without special Smurfs takes very little time, but BCP is a little

slower when using special Smurfs. In the case of the second benchmark, precomputation without

special Smurfs takes the bulk of the solver time.

4.1.2 XOR Smurfs

The XOR Smurf is similar to the OR Smurf except that the XOR Smurf is composed of dual rails of

counter states. An XOR constraint is either of the form x1⊕ ...⊕xk or x1⊕ ...⊕xk⊕ T, depending on

whether or not it is negated. One rail of the XOR Smurf represents the negated form and the other

represents the non-negated form. Setting a variable to False transitions the XOR Smurf from one

rail to the other. Setting a variable to True keeps the Smurf on its current rail. Eventually, the

Smurf will transition into one of two different inference states representing either the negated or

non-negated form of the XOR constraint. See Figure 4.1 on the preceding page for a visualization
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of this special Smurf.

4.1.3 AND/OR Gate Smurf

Both AND gates and OR gates can be modeled using a single special Smurf type because their

functions are considered under arbitrary negation, i.e

x0 ≡ (x1 ∧ x2) ≡ x0 ⊕ (x1 ∨ x2)

Like the previous two special Smurfs, the AND/OR gate’s counter states keep track of the number of

unset literals, though only in the tail of the constraint (x1 and x2 in the function above). They also

have two extra transitions which correspond to setting the head variable (x0 in the function above).

But, what’s really fascinating about this special Smurf is that the counter states have transitions

into other special Smurfs; both the previous special OR and XOR Smurfs. A visualization of the

AND/OR gate Smurf is given in Figure 4.2 on the next page.

4.1.4 Cardinality Smurfs

Similar types of symmetries exist in Boolean functions other than those using ORs and XORs. Intro-

duced here are two such special Smurfs, namely cardinality constraints and negated cardinality

constraints. Notoriously difficult to efficiently encode in CNF [13,20,63,109], these special Smurfs

have at most n2 number of states where n is the number of variables of the constraint.

A cardinality constraint is a Boolean function of the form: min ≤ x1 + .. + xn ≤ max where

min and max are positive integers, x1..xn are Boolean variables, and the constraint is satisfied if

the number of Boolean variables taking the value True is greater than or equal to min and less

than or equal to max. A negated cardinality constraint is the negation of a cardinality constraint.

Figure 4.3 on page 56 and Figure 4.4 on page 57 show general and special Smurf representations

of cardinality constraints and negated cardinality constraints.

Both types of cardinality Smurfs are composed of counter states that keep track of the number

of unset variables and the number of variables that have been set to True. This is enough informa-
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Figure 4.2 — Both the general Smurf and the special AND gate Smurf representing the function x0⊕ (x1∧x2∧
x3 ∧ x4).
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tion, given the original min andmax to determine whether or not any literals are inferred. The rules

for determining inferences from these special Smurfs are given in Algorithm 6 and Algorithm 7.

Algorithm 6 TransitionCardinalitySmurf(Smurf SC , variable, polarity)

1: min := Max(0, SC .min− SC .numTrue)
2: max := SC .max− SC .numTrue
3: if polarity = True ∧ max = 1 then

4: Infer remaining variables to False

5: else if polarity = False ∧ SC .numV ariables− 1 = min then

6: Infer remaining variables to True

7: end if

8: return polarity ? SC .trueTransition : SC .falseTransition

Algorithm 7 TransitionNegatedCardinalitySmurf(Smurf SNC , variable, polarity)

1: min := Max(0, SNC.min − SNC.numTrue)
2: max := SNC .max− SNC .numTrue
3: if (polarity = True ∧ SNC .numV ariables ≤ max ∧min = 2) ∨
4: (polarity = False ∧ SNC .numV ariables = max+ 1 ∧min = 1) then
5: Infer remaining variables to False

6: else if (polarity = True ∧ SNC .numV ariables = max+ 1 ∧min = 1) ∨
7: (polarity = False ∧ SNC .numV ariables = max+ 2 ∧min = 0) then
8: Infer remaining variables to True

9: end if

10: return polarity ? SNC .trueTransition : SNC .falseTransition

The sequence constraint [19,34] is a variant on the cardinality constraint that is satisfied if and

only if a given length sequence of a list of variables all take the same value. Though not presented

here, sequence constraints have a similar special Smurf encoding.

4.1.5 XOR Factors on Smurf Transitions

Introduced here is a technique that compresses Smurfs and supports the use of a special-purpose

Gaussian elimination solver. Special Smurf transitions have been developed that memoize the

parity (XOR) factors of Boolean functions fitting the form (xi ⊕ .. ⊕ xj) ∧ F (x1..xn), where F is

some non-linear Boolean function (see Figure 4.5 on page 59 for a visualization). These special

transitions can be used to infer XOR functions, meaning that XOR functions can be factored out of

Smurf states early, reducing the complexity of Smurfs with XOR components and supporting the
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Figure 4.3 — Both the general Smurf and the special cardinality-based Smurf representing the function 2 ≤
x1 + x2 + x3 + x4 + x5 ≤ 4.
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x1 : x2x3x4 x1 : x2x3x4 x2 : x1x3x4 x2 : x1x3x4 x3 : x1x2x4 x3 : x1x2x4 x4 : x1x2x3 x4 : x1x2x3x1 : x5 x1 x5 : x1 x5

x5x1

x1

x2 x3 x1 x5
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x2 : x3x5 x3 : x2x5 x5 : x2x3 x1 : x2x4 x2 : x1x4 x4 : x1x2

x3

x4 x1

x4 : x5 x4 x5 : x4 x5

x4 x3

x1 : x2x3x5 x1 : x2x3x5 x2 : x1x3x5 x2 : x1x3x5 x3 : x1x2x5 x3 : x1x2x5 x5 : x1x2x3 x5 : x1x2x3

x3

x1 : x2 x1 x2 : x1 x2

1 ≤ x1 + x2 + x4 + x5 ≤ 3

0 ≤ x3 + x4 + x5 ≤ 1

x1 ∨ x51 ≤ x1 + x3 + x4 + x5 ≤ 3x3 ∨ x4

0 ≤ x1 + x2 + x3 + x5 ≤ 1

x2 ∨ x5 x1 ∨ x3

0 ≤ x1 + x2 + x3 + x4 ≤ 1

x2 ∨ x3

0 ≤ x2 + x3 + x4 ≤ 1 0 ≤ x1 + x3 + x5 ≤ 1

0 ≤ x1 + x2 + x4 + x5 ≤ 1

0 ≤ x1 + x4 + x5 ≤ 1

1 ≤ x1 + x2 + x3 + x5 ≤ 3x1 ∨ x4x3 ∨ x5

0 ≤ x1 + x3 + x4 ≤ 1 0 ≤ x1 + x2 + x4 ≤ 1

x1 ∨ x2

0 ≤ x1 + x3 + x4 + x5 ≤ 1

1 ≤ x2 + x3 + x4 + x5 ≤ 3

0 ≤ x2 + x3 + x5 ≤ 1

True

0 ≤ x2 + x3 + x4 + x5 ≤ 1

0 ≤ x2 + x4 + x5 ≤ 1 0 ≤ x1 + x2 + x5 ≤ 1 0 ≤ x1 + x2 + x3 ≤ 1

x2 ∨ x4 1 ≤ x1 + x2 + x3 + x4 ≤ 3

2 ≤ x1 + x2 + x3 + x4 + x5 ≤ 4

x4 ∨ x5

2 ≤ x1 + x2 + x3 + x4 + x5 ≤ 4

xi : x1..x3

xi

xi

xi : x1..x4 xi

xi

xi : x1..x4 xi : x1..x4 x1 : x2 x2 : x1 x1 x2

1 ≤ x1 + ..+ x4 ≤ 3

x1 + ..+ x3 < 2

x1 + ..+ x4 < 2

2 ≤ x1 + ..+ x5 ≤ 4

x1 + x2 < 2

True

Figure 4.4 — Both the general Smurf and the special cardinality-based Smurf representing the function
2 ≤ x1 + x2 + x3 + x4 + x5 ≤ 4.
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use of a special-purpose Gaussian elimination solver. See Section 5.2 on page 81 for more on this

special-purpose solver and how Boolean factors are discovered and safely factored out of Boolean

functions.

4.2 General to Special Smurf Transitions

Another Smurf compression technique involves allowing general Smurfs to transition into special

Smurfs. The special Smurfs from [66] can be made to act like the leaf states of a general Smurf,

i.e. a general Smurf may transition into a special Smurf, but there are not currently any special

Smurfs that transition into a general Smurf. For example, the function x1∨(1 ≤ x2+x3+x4 ≤ 2)

(visualized in Figure 4.6 on page 60) is more compact when built using special Smurfs as leaf nodes.

4.3 Smurf Normalization

Smurf normalization, another kind of Smurf compression technique, decreases the size of the

entire collection of Smurfs by increasing the amount of state sharing between Smurfs. The idea

is this: instead of building a Smurf for a BDD b with n variables, the Smurf is built for a BDD b′

that contains variables 1, .., n, is isomorphic to b, and, when its variables are interpreted as indices

into the variable list of b, is functionally equivalent to b. Algorithm 8 shows how to normalize a

BDD prior to building its Smurf. Normalizing every Smurf greatly increases Smurf state sharing

across an entire collection of Smurfs because many Smurf states are now identical that before were

only isomorphic. However, the variables of normalized Smurfs have to be interpreted as indices

into the original variable list. This makes the implementation more complicated but, in terms of

computational complexity, has a negligible effect. Even more sharing is possible if normalization is

performed before the construction of every Smurf state. However, during search, it is cumbersome

to interpret variables of this kind of Smurf.

Subgraph isomorphism in the context of BDDs has been studied a bit before. One approach to

detecting some isomorphic BDD nodes is described in [7] where Differential BDDs are introduced.

Also, ACL2’s OBDD implementation [32] is geared toward isomorphic subgraph sharing because
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x1 ⊕ ((x2 ⊕ x3) ∧ (x3 ∨ x4))
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x2 : x3x4 x2 : x3 x3 : x2 x3 : x2x4 x4 : x2x3

x2 : x3 x2 : x3 x3 : x2 x3 : x2
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x1 : x4 x1 : x4 x4 : x1 x4 : x1
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x1 : x2x4 x2 : x1 x4 : x1
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x3 x3 : x4 x4 : x3 x4

x4 x2 x4
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x3

x1 : x3 x1 : x3 x3 : x1 x3 : x1

x4

x2 : x3 x2 : x3 x3 : x2 x3 : x2

x2 x2x1

x1 : x2x3 x2 : x1 x3 : x1

x4

x2 ⊕ x3 x1 ⊕ x2x3 ∨ x4

(x2 ⊕ x3) ∧ (x3 ∨ x4)

x1 ⊕ x2 ⊕ T

x1 ⊕ (x2 ∧ x4)

x1 ⊕ x3

x1 ⊕ x2 ⊕ x3

x1 ⊕ x4

x1 ⊕ (x2 ∧ x3)

x2 ⊕ x3 ⊕ T

x1 ⊕ ((x2 ⊕ x3) ∧ (x3 ∨ x4))

x1 ⊕ (x3 ∧ x4)

True

x2 ∨ x4 x1 ⊕ x3 ⊕ Tx2 ∨ x3

(x2 ∧ (x3 ∨ x4)) ∨ (x2 ∧ x3)

x1 ⊕ ((x2 ⊕ x3) ∧ (x3 ∨ x4))

x3 x3 : x4 x4 x4 : x3x2 x2 : x3 x3 : x2 x3

x4 x1

x1 : x2x4 x2 : x1 ⊕ x4 x2 : x1 x4 : x1 ⊕ x2 x4 : x1

x3 x3 : x4 x4 : x3 x4

x2 : x3 x3 : x2 x4 : x2 ⊕ x3 ⊕ T

x1

x2 : x4 x2 x4 : x2 x4

x2 : x1 ⊕ x3 x3 : x1 ⊕ x2 ⊕ T x4 : x1 ⊕ x2 ⊕ x3 x3 x1

x3 x4

x2

x2

x1 : x2 ⊕ x3

x1 : x2x3 x2 : x1 x2 : x1 ⊕ x3 x3 : x1 ⊕ x2 ⊕ T x3 : x1

x1

x1 : x3x4 x3 : x1 x3 : x1 ⊕ x4 x4 : x1 ⊕ x3 ⊕ T x4 : x1x3 ∨ x4x3 ∨ x4 x2 ∨ x4

x1 ⊕ (x2 ∧ x3)

x2 ∨ x3

(x2 ∧ (x3 ∨ x4)) ∨ (x2 ∧ x3)

x1 ⊕ ((x2 ⊕ x3) ∧ (x3 ∨ x4))

x1 ⊕ (x3 ∧ x4)

True

x1 ⊕ (x2 ∧ x4)

Figure 4.5 — The Smurf representing the function x1 ⊕ ((x2 ⊕ x3) ∧ (x3 ∨ x4)) is shown here without and with XOR factors memoized on Smurf
transitions. Though there are a lot of XOR factors shown here, the x1 transition contains the most interesting one because x1 is the only
transition with an XOR factor that transitions into a general Smurf . This transition demonstrates the real power of factoring to remove
factors early and simplify the Smurf.
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x1 ∨ (1 ≤ x2 + x3 + x4 ≤ 2)
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x1 ∨ x2 ∨ x4

x3 ∨ x4 x1 ∨ x4x1 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x2

x1 ∨ (1 ≤ x2 + x3 + x4 ≤ 2)

x3 ∨ x4

True

x1 ∨ x2x2 ∨ x4

x1 ∨ x2 ∨ x3x1 ∨ x3 ∨ x4 x1 ∨ x2 ∨ x3

x1 ∨ x4

x1 ∨ (1 ≤ x2 + x3 + x4 ≤ 2)

xi

xi

x1 x2 x1 : x2 x2 : x1x1 x2 x1 : x2 x2 : x1

x1

x1 x2 x1 : x2 x2 : x1x1 x2 x1 : x2 x2 : x1

x2

xixi

xi

x1

xi

x3

x1 x2 x1 : x2 x2 : x1

xi

x1 x2 x1 : x2 x2 : x1

xi

x1 x2 x1 : x2 x2 : x1

x2

x1 : x2 x2 : x1 x1 x2

xi xi

xi

xi

x4x4

xixi

x3

x1 ∨ x2

x1 ∨ .. ∨ x3

x1 + x2 ≤ 1

1 ≤ x1 + ..+ x3 ≤ 2

x1 ∨ x2x1 ∨ x2

x1 ∨ .. ∨ x3

x1 ∨ x2

x1 ∨ .. ∨ x3

x1 ∨ x2

x1 ∨ (1 ≤ x2 + x3 + x4 ≤ 2)

x1 ∨ .. ∨ x3

x1 ∨ x2

True

x1 ∨ .. ∨ x3x1 ∨ .. ∨ x3

1 ≤ x1 + x2

Figure 4.6 — Shown here is both a general Smurf and a Smurf whose general Smurf states transition into special Smurf states. Both Smurfs
represent the function x1 ∨ (1 ≤ x2 + x3 + x4 ≤ 2).
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Algorithm 8 CreateNormalizedSmurf(BDD b)
The BddPermute operation remaps the variables in a BDD and is available in BDD packages
such as CUDD.

1: bnorm :=BddPermute(b,Support(b), [1, .., |Support(b)|])
2: return CreateSmurf(bnorm)

the index of a BDD node is interpreted based on its depth from the root, rather than stored directly

at the node.

4.4 Smurfs on Demand

One way to relax some of the precomputation that’s done when building a Smurf is to construct it

on demand, or lazily. At least for current applications, the only information Smurfs provide that is

absolutely needed prior to beginning search is heuristic information. When using a common CDCL

heuristic, such as VSIDS [117], Smurf precomputation does not directly contribute to the heuristic.

In this case, Smurfs can be built lazily, i.e. Smurf nodes are built upon being transitioned into

during search and may be deleted after the search has backtracked over them. This technique

can be very profitable because Smurf precomputation is often expensive and many practical SAT

instances only require a very small space to be searched. Hence it is likely that not every possible

state of every individual Smurf needs to be explored to determine the satisfiability of an instance.

This technique is also helpful when preprocessing techniques inadvertently create large Smurfs.

For example, the Smurfs for two of the benchmarks used in Table 4.1 on page 64 and Table 4.2 on

page 65, 2dlx ca mc ex bp f.cnf and 2dlx cc mc ex bp f.cnf were not able to be built within

the memory limit of 16 GiB. This is because CNF pattern matching may have reverse engineered

some long AND/OR gates and early quantification existentially quantified away some of their vari-

ables. AND/OR gate constraints do not cause any memory problems during precomputation because

a special AND gate Smurf can be used (see Section 4.1.3 on page 53). However, if existential quan-

tification is turned on during preprocessing and one of the variables in the tail of such a constraint

is quantified away, the constraint will no longer match any special Smurf type (see Figure 4.7 on

the following page). If the constraint has a lot of variables, it will take significant time to precom-
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pute the general Smurf, so much so that this time may dominate the precomputation process (as

it did for the two benchmarks mentioned above). In cases like this, where preprocessing methods

inadvertently work against each other, precomputation can be performed very quickly if Smurfs

with too many variables are computed lazily and the rest are precomputed. When this technique

was applied to the 2dlx ca mc ex bp f.cnf and 2dlx cc mc ex bp f.cnf, with a limit of twelve

variables, precomputation took very little time.

x0 ⊕ (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5)

x4

x2

F

xo xo

x1

T

x5

x3

∃x5
(x0 ⊕ (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5))

x1

F

x3

xo

T

x2

x4

Figure 4.7 — This figure shows that preprocessing methods can sometimes be harmful to Smurf precomputation.
Specifically, this figure shows that a function that would be precomputed using a special Smurf
must instead be precomputed using a general Smurf because early quantification applied to the
AND gate BDD on the left changes its function type to that of the BDD on the right that has no
corresponding special Smurf.

4.5 Experimental Results

This section provides results demonstrating the power of the Smurf precomputation techniques

introduced in this chapter. All of the new techniques and special Smurfs have been implemented

in SBSAT, the tool used to collect the results shown in the two tables below. Both table show

results on the benchmarks used in the previous chapter. The benchmarks come from a wide variety

of industrial domains such as verification, equivalence checking, and bounded model checking and
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also include benchmarks from the crafted categories of previous SAT competitions [21]. The first

table, (Table 4.1 on the next page), shows the time spent creating Smurfs and the total number of

Smurf states needed to fully represent each benchmark as a collection of Smurfs. Each benchmark

was preprocessed by first recovering Boolean gates from the CNF and then running Ve-TreeIter

to completion with the VarScore heuristic and a limit of no more than ten variables per conjoined

BDD. Also, existential quantification and inference propagation were used. The “-” symbol indi-

cates that physical memory (16 GiB) was exhausted. Four different configurations are used. The

first configuration uses only general Smurfs. The second allows special Smurfs to be transitioned

into from general Smurfs (described in Section 4.2 on page 58). The third configuration uses

Smurf normalization (described in Section 4.3 on page 58). The fourth configuration allows both

general Smurf to special Smurf transitions and Smurf normalization. This first table shows that

the techniques introduced in this chapter can give a large improvement on what was previously

possible, along with providing confidence that these methods enable state-based SAT to scale to

industrial problems.

The second table, Table 4.2 on page 65, shows the numbers of general and special Smurf states

used to build the collection of Smurfs presented in Table 4.1 on the next page. The columns

labeled “CC” and “NCC” give the number of special cardinality constraint and special negated

cardinality constraint states, respectively (described in Section 4.1.4 on page 53). The column

labeled “Inference” gives the number of inferences memoized on Smurf transitions. The column

labeled “XFACT” gives the number of XOR factors memoized on Smurf transitions (described in

Section 4.1.5 on page 55). This table demonstrates that every special Smurf type is used, and,

given that each special Smurf type has an exponential general Smurf representation, necessary

to represent most problems as a collection of Smurfs. Even with the support of special Smurfs,

many general Smurf states are still being built. This hints that more special Smurfs types could

be built, reducing the need for general Smurfs. This table also provides perspective, showing that

any state-based SAT solver needs the techniques and special Smurfs introduced in this chapter to

scale to industrial sized problems with millions of variables and constraints.
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Table 4.1 — Statistics of SBSAT building generalSmurfs, special Smurfs, normalizedSmurfs, and normalized
special Smurfs for benchmarks of [120] and [67].

General Special Normalized Norm.+Spec.

Instance Clauses Vars Time States Time States Time States Time States

par8-1-c 254 64 0.00 0 0.00 0 0.00 0 0.00 0
par8-1 1149 350 0.00 0 0.00 0 0.00 0 0.00 0
par16-1-c 1264 317 0.84 77848 0.17 42309 0.08 18605 0.05 9851
par16-1 3310 1015 2.28 80841 0.11 6684 0.15 29522 0.08 5664
par32-1-c 5254 1315 10.00 301723 1.18 97366 0.32 74995 0.20 30588
par32-1 10277 3176 23.76 287511 1.83 39201 0.28 70629 0.17 19222

barrel5 5383 1407 - - 7.68 256728 - - 0.19 22037
barrel6 8931 2306 - - 16.73 428125 - - 0.17 22439
barrel7 13765 3523 - - 35.61 652198 - - 0.16 21019
barrel8 20083 5106 - - - - - - 0.23 22779
barrel9 36606 8903 - - - - - - 0.48 62356

ssa2670-130 3321 1359 0.97 44246 0.77 38688 0.17 40480 0.23 36131
ucsc-bf1355-348 7271 2286 14.26 308529 11.01 273624 0.52 150177 0.76 110445
dubois100 800 300 0.00 0 0.00 0 0.00 0 0.00 0

dlx1 c 1614 287 21.20 821878 0.52 73808 6.42 767668 0.41 60149
1dlx c mc... 3725 766 - - 2.33 178278 173.98 14720645 0.74 137371
dlx2 cc bug18 20208 2043 - - - - - - 5.28 707682
2dlx ca mc... 24640 3186 - - - - - - - -
2dlx cc mc... 41704 4524 - - - - - - - -
2dlx cc...bug019 48232 4824 - - - - - - 10.12 928851
9vliw bp mc 179492 19148 - - - - - - 63.12 3424878

c499 1870 606 - - 0.46 56392 - - 0.25 28773
3bitadd 32 32316 4480 - - - - - - 0.14 8683
x1.1 16 122 46 0.00 0 0.00 0 0.00 0 0.00 0
x2 128 1018 382 0.95 49624 0.00 532 0.00 2046 0.00 124
longmult12 18645 5974 - - - - 7.78 603607 1.30 137309
longmult14 22389 7176 - - - - 5.77 607969 1.34 139745
longmult15 24351 7807 - - - - 5.90 623923 3.13 155186
ibm...3-k95 272059 73525 - - - - 2.41 380861 2.95 334358
ibm...23-k100 861175 207606 - - - - - - 7.16 784307

hanoi6 39666 4968 - - - - 6.06 1230676 9.54 1211366
Mat26 2464 744 5.10 162849 4.88 264263 0.45 108292 1.75 104338
Mat317 85050 24435 - - - - 5.58 1029325 11.08 948782
linvrinv8 6337 1920 - - 16.66 575573 - - 1.38 133600
linvrinv9 9154 2754 - - 24.33 868700 - - 3.97 183057
equilarge l5 18519 4478 - - 3.32 201832 0.38 101568 0.27 32977
pyhala...4-01 31795 9638 - - - - 11.40 2174858 30.72 1983185
clauses-2 272784 75527 - - - - - - 5.12 485178
clauses-4 1002957 267766 - - - - - - 8.93 588432
clauses-6 2623082 683995 - - - - - - 16.45 667006
clauses-8 5687554 1461771 - - - - - - 22.64 832715
clauses-10 8901946 2270929 - - - - - - 24.19 911094
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Table 4.2 — A table showing the number of each special Smurf type that was to build the collection of Smurfs
for the benchmarks of [120] and [67].

Instance Clauses Vars OR XOR ∧/∨ Gate CC NCC Inference XFACT General

par8-1-c 254 64 0 0 0 0 0 0 0 0
par8-1 1149 350 0 0 0 0 0 0 0 0
par16-1-c 1264 317 213 3168 192 635 0 2039 513 3092
par16-1 3310 1015 206 893 168 340 2 2023 618 1415
par32-1-c 5254 1315 386 4571 926 1564 152 8633 5296 9061
par32-1 10277 3176 735 1197 658 305 48 6975 3371 5934

barrel5 5383 1407 2862 230 3878 0 10 3793 142 11123
barrel6 8931 2306 2653 257 4308 0 12 4153 167 10890
barrel7 13765 3523 3293 203 4048 0 12 3009 114 10341
barrel8 20083 5106 3088 244 4080 0 12 4073 155 11128
barrel9 36606 8903 6522 143 11082 0 16 15665 147 28782

ssa2670-130 3321 1359 1870 230 2960 12 53 15354 1985 13668
ucsc-bf1355-348 7271 2286 19296 3719 723 16 42 29995 9196 47459
dubois100 800 300 0 0 0 0 0 0 0 0

dlx1 c 1614 287 5290 169 11829 30 0 20554 5065 17213
1dlx c mc... 3725 766 10009 296 19129 23 16 41618 11022 55259
dlx2 cc bug18 20208 2043 129529 92 755 19 30 84708 7842 484708
2dlx ca mc... 24640 3186 - - - - - - - -
2dlx cc mc... 41704 4524 - - - - - - - -
2dlx cc...bug019 48232 4824 55751 464 95664 72 638 219221 159651 397391
9vliw bp mc 179492 19148 79377 454 115637 48 127 1387076 51267 1790893

c499 1870 606 660 4820 3115 57 69 9430 4333 6290
3bitadd 32 32316 4480 1954 0 0 0 0 952 0 5778
x1.1 16 122 46 0 0 0 0 0 0 0 0
x2 128 1018 382 0 124 0 0 0 0 0 1
longmult12 18645 5974 1519 3338 5855 689 568 56414 20425 48502
longmult14 22389 7176 1436 3282 5366 691 523 55781 22540 50127
longmult15 24351 7807 1318 3182 5290 765 541 64307 26188 53596
ibm...3-k95 272059 73525 11846 1230 36911 164 198 99689 35413 148908
ibm...23-k100 861175 207606 31451 1597 95675 498 428 255110 79741 319808

hanoi6 39666 4968 18070 1241 54255 699 168 277402 85145 774387
Mat26 2464 744 175 9759 4546 0 0 20476 5364 64019
Mat317 85050 24435 180 14244 5634 0 134 154593 122609 651389
linvrinv8 6337 1920 224 12266 4710 0 14 11639 8568 96180
linvrinv9 9154 2754 250 13035 5276 0 30 14774 13266 136427
equilarge l5 18519 4478 179 5216 824 1094 20 10331 7566 7748
pyhala...4-01 31795 9638 324 10718 5902 5848 1550 598670 708770 651404
clauses-2 272784 75527 29441 2630 36590 1982 208 162448 50199 201681
clauses-4 1002957 267766 21443 3663 25608 8185 600 212442 68312 248180
clauses-6 2623082 683995 20209 3528 22469 3977 467 239794 82852 293711
clauses-8 5687554 1461771 22172 8904 25102 5051 668 308526 109507 352786
clauses-10 8901946 2270929 19872 5254 26513 5947 562 345504 125105 382338
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Chapter 5

State-based SAT Search

The previous chapters have laid the foundation for state-based SAT search by introducing meth-

ods for preprocessing low-level input and precomputing state-based SAT search data structures.

Chapter 3 on page 30 introduced a BDD-based preprocessing methodology that reverse engineers

common Boolean gates from CNF, generating a conjunction of BDDs which can be clustered using

the Ve-TreeIter method working in tandem with a few of the latest BDD clustering heuristics

such as Force and VarScore. Inference discovery and pairwise BDD operations are interleaved

with clustering to further simplify the conjunction of BDDs. The goal of the preprocessing phase

is to significantly reduce the number of variables and constraints of a given problem while elicit-

ing any user-domain structure. Chapter 4 on page 48 showed how to transform the preprocessed

conjunction of BDDs into a collection of highly compressed Smurfs using precomputation, special

parameterized Smurfs, Smurf normalization, and Boolean factorization methods. This chapter

introduces methods for performing intelligent and efficient search on Smurfs. Also, results showing

the effects of these search techniques and techniques presented in previous chapters are given.

5.1 Support for CDCL Techniques

Recent CDCL techniques such as watched pointers [69, 106, 117], conflict clause minimization [18,

70], Unique Implication Points (UIPs) [111, 117], conflict clause memory management [10], and

dynamic restarts [83,94] have quickly become necessary components of competitive CDCL solvers.
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Fortunately, each of these recent techniques can be supported by state-based SAT search. This is

achieved by encapsulating the core components of state-based SAT search in a library providing a

tailored set of search routines that can be used by extensible CDCL solvers.

The source code of many CDCL solvers is freely available. Some are well documented and

extensible, meaning, they were developed with the methodology that they would be used as com-

ponents (or libraries) in larger projects. This means that anyone developing a state-based SAT (or

other higher domain solver) can easily make use of existing CDCL techniques by plugging into one

(or more) of the many extensible CDCL solver frameworks. With state-based SAT (and SBSAT in

particular) this task is relatively simple. Five hooks are needed, four of which communicate infor-

mation about the CDCL solver state to the state-based SAT solver, and one which communicates

Smurf inferences and witness clauses to the CDCL solver. Figure 5.1 provides a diagram showing

the communication between the two types of solvers.

Enqueue Inference & Witness

SBSAT

SAT / UNSAT

Initial SMURFsInitial Clauses

Push State (Decision Point)

Pop State (Backtrack)

Propagate Inference

Restart

CDCL

Figure 5.1 — Communication between an extensible CDCL solver and a state-based SAT solver.

The information passed from the CDCL solver to the state-based SAT solver is trivial, really

just a series of commands denoting where the solver is in the search tree. The most complex pieces
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of information are the witness clauses generated from Smurfs that are passed from the state-based

SAT solver to the CDCL solver. Once the CDCL solver receives a witness clause as a reason for an

inference it will automatically take care of conflict clause analysis, minimization, heuristic updates,

and so on. The next section describes in detail the processes for generating witness clauses from

Smurfs.

5.1.1 State-based SAT Learning

This section describes efficient methods of learning new information (such as conflict clauses) from

Smurfs. The most successful industrial-strength SAT solvers learn new clauses during search.

Whenever the solver reaches a conflict, resolution is used to produce a new conflict clause that is

added to the formula to avoid that same conflict in the future. Recent SAT solver research has

focused heavily on efficient generation and use of conflict clauses because, for certain problem do-

mains such as verification, the use of conflict clauses has been shown to produce orders of magnitude

improvement in solving time [18,110,111,125].

With state-based SAT, many choices exist regarding learning. For example, resolving on a

variable x in clauses ci and cj produces the resolvent cr where cr ≡ ∃x(ci∧ cj). When a state-based

SAT solver reaches a conflict, Smurf-based resolvents could be computed in the same way, adding

new conflict Smurfs to the current collection, however, this approach is not explored here. State-

based SAT supports standard CDCL conflict clause generation and all currently known CDCL

conflict clause techniques. The main contributions of state-based SAT solving are the witness

clauses generated by Smurfs. Witness clauses (sometimes called reason clauses) are those clauses

that have become unit during BCP and hence are asserting a literal. During conflict analysis,

witness clauses are resolved together at UIPs to generate conflict clauses [111,117].

In the case of state-based SAT search, witness clauses are generated from Smurfs during BCP.

Conflict clause analysis and learned clause maintenance can then work in the same manner as that

of a standard CDCL solver. The approach taken here was to hook a state-based SAT solver into

a CDCL solver, letting the CDCL solver manage all conflict clause analysis and maintenance (the

communication needed is shown in Figure 5.1 on the previous page).
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A Smurf witness clause for an inference i generated by a Smurf S’s transition t must consist

of i and at most the negation of the non-inferred literals on the path from the root of S to t that

are consistent with the current partial assignment. There may be many such paths, and hence

many different yet correct witness clauses for a particular inference. However, since inferences are

handled in turn during BCP, there is always a minimal witness clause, i.e. one that contains i and

consists of the negation of the non-inferred literals of the shortest path from the root of S to any

state that directly implies i (not necessarily the current state) and is consistent with the current

partial assignment. Consider the following Boolean function:

(x1 ∨ x3) ∧ (x2 ∨ x3)

Both assignments x1 "→ True and x2 "→ True infer x3. Since Smurfs are arc-consistent with respect

to the function they were generated from, and since BCP handles one inference at a time, only

one of the witness clauses (x1 ∨ x3) or (x2 ∨ x3) can be minimal with respect to the current partial

search assignment, i.e. when the witness clause for x3 is generated, only one of x1 "→ True or x2 "→

True will have been removed from the inference queue, added to the current partial assignment,

and propagated by BCP.

Recent SAT research has focused on generating new clauses and minimizing them during

search [18,70]. Witness clauses produced by Smurfs can provide added support to conflict clause

generation and minimization. A greedy method for generating witness clauses from Smurfs is used

in the tools presented in [65, 66], however, the witness clauses are not guaranteed to be minimal.

To see how to generate minimal witness clauses from Smurfs, it will help to first explore previous

research on generating minimal witness clauses from BDDs.

In [51], generating witness clauses from BDDs is briefly mentioned. They claim to use a greedy

method that would likely produce the same clauses as the method used in [65,66], though, since de-

tails are not provided, this is only a guess. In [78], an algorithm is given that generates the minimal

witness clause M from a BDD G and an unminimized witness clause P . P is the conjunction of the

literals of the witness clause except for the literal being inferred, l. Prior to executing the algorithm,
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G is transformed into ∃!xG|l, where "x is the support of G not in P . A slightly enhanced version of

their algorithm is presented here in Algorithm 9. The main difference is that the algorithm of [78]

has the precondition that G only contain variables in P , requiring all variables in G but not in P

to be existentially quantified away from G prior to executing the algorithm. Algorithm 9 relaxes

this precondition by interleaving existential quantification between recursive calls at line 12.

Algorithm 9 BddMininf(G, P , M)
G ∧ P ≡ False

P is the conjunction of literals representing an initial witness clause for literal l
1: if G = False then return M
2: G := Ite(vg, Gvg , Gvg )
3: P := Ite(vp, Pvp , Pvp)
4: if Pvp = False then l := vp else l := vp
5: if vg = vp then

6: if IteConstant(Pl, Gl, False) = False then

7: return BddMininf(Gl, Pl,M ∪ l)
8: else

9: return BddMininf(∃vgG,Pl,M)
10: end if

11: else if BddVarOrder(vg) < BddVarOrder(vp) then
12: return BddMininf(∃vgG,P,M)
13: else

14: return BddMininf(G,Pl,M)
15: end if

Existential quantification is an expensive BDD operation and the optimization presented here

only goes so far in reducing its cost. It is possible to remove the existential quantification operation

on line 12 by adding a precondition that the BDD variable ordering should put all variables in

the support of G but not in P nearest the leaves of the BDDs. However, BDD reordering also

is expensive and the existential quantification operation at line 9 cannot be removed by variable

reordering without knowing ahead of time which variables will be in the minimized clause.

One natural way to completely remove the need for existential quantification is to use Smurfs.

Algorithm 10 shows an adaptation of Figure 9 that generates minimal witness clauses from Smurfs.

Smurfs naturally represent all possible variable orderings and hence the “best” ordering can easily

be chosen on the fly. Due to the fact that a Smurf node may be shared by two or more Smurfs,

witness clauses cannot be memoized on Smurf transitions. This makes having an efficient witness
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clause generation algorithm even more important because it will be called often during search.

Algorithm 10 SmurfMininf(S, P , l)
P is the set of literals representing an initial witness clause for literal l
Traverse traverses Smurf S according to the set of literals P . If a Smurf transition is taken
that infers a literal opposite its value in P , CONFLICT is returned. Otherwise, the resulting Smurf

node is returned.
1: M := {l}
2: S := Traverse(S, {l})
3: if S = CONFLICT then return M
4: for each literal Pi in P do

5: P := P \ {Pi}
6: if Traverse(S,P ) *= CONFLICT then

7: M := M ∪ {Pi}
8: S := Traverse(S, {Pi})
9: end if

10: end for

11: return M

5.1.2 Experimental Results

The core routines of SBSAT have been compiled into a library and integrated into funcsat, a state of

the art CDCL solver [38] (more about funcsat can be found in Section 2.5.2 on page 27). Presented

here are experimental results showing the effectiveness of this integration. These results act to

provide a baseline and set expectations for integrating state-based SAT with CDCL solvers in

general. This integration also allows preprocessing and precomputation methods to be measured

by benchmarking their ability to enhance CDCL search.

The first table, Table 5.1 on the next page shows the results of three solvers on the benchmarks

used in [120] and [67]. The first solver is SBSAT configured to use the preprocessing techniques

introduced in Chapter 3 on page 30. Specifically, CNF pattern matching was applied to reverse

engineer common constraints from CNF input. Pattern matching is critical for the performance

of both SBSAT and SBSAT + funcsat because it enables full use, or approaches full use, of spe-

cial Smurfs. During BDD clustering, existential quantification and inference propagation were

interleaved with Ve-TreeIter. Ve-TreeIter was configured to use the VarScore clustering

heuristic and given a maximum limit of nine variables per conjoined BDD. After preprocessing,
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Table 5.1 — Results of SBSAT, funcsat, and SBSAT + funcsat solving benchmarks of [120] and [67].

SBSAT funcsat SBSAT + funcsat

Instance Clauses Vars Choices Time Choices Time Choices Time

par8-1-c 254 64 0 0.01 21 0.04 0 0.00
par8-1 1149 350 0 0.01 25 0.05 0 0.01
par16-1-c 1264 317 5922 0.09 807 0.08 998 0.08
par16-1 3310 1015 107744 0.74 2087 0.27 3104 0.16
par32-1-c 5254 1315 - - - - - -
par32-1 10277 3176 - - - - - -

barrel5 5383 1407 6818 0.51 4825 0.89 4235 0.60
barrel6 8931 2306 23690 1.23 14607 5.46 12892 2.60
barrel7 13765 3523 62978 4.05 29948 15.75 41513 10.62
barrel8 20083 5106 133410 10.97 63290 53.27 72499 24.60
barrel9 36606 8903 - - 223862 131.50 411089 149.98

ssa2670-130 3321 1359 52 0.11 259 0.06 45 0.09
ucsc-bf1355-348 7271 2286 0 0.14 63 0.08 0 0.15
dubois100 800 300 0 0.01 2936 0.06 0 0.01

dlx1 c 1614 287 121083569 261.00 681 0.06 744 0.08
1dlx c mc... 3725 766 - - 1811 0.10 2052 0.14
dlx2 cc bug18 20208 2043 268 4.16 6389 0.33 2102 1.03
2dlx ca mc... 24640 3186 - - 27882 1.89 22939 1.78
2dlx cc mc... 41704 4524 - - 36163 2.79 43900 4.98
2dlx cc...bug019 48232 4824 - - 18891 1.59 6611 1.16
9vliw bp mc 179492 19148 - - 646385 43.50 601164 52.30

c499 1870 606 33820644 78.73 5152 0.18 405 0.07
3bitadd 32 32316 4480 - - 2776 0.26 3821 0.68
x1.1 16 122 46 0 0.00 1228 0.06 0 0.00
x2 128 1018 382 - - - - - -
longmult12 18645 5974 144518 8.85 108062 130.79 72934 22.39
longmult14 22389 7176 157078 11.86 99869 118.88 90779 32.48
longmult15 24351 7807 125220 11.30 110436 105.41 77959 27.93
ibm...3-k95 272059 73525 - - 36067 4.76 49342 6.20
ibm...23-k100 861175 207606 - - 3973539 4112.46 4385430 751.76

hanoi6 39666 4968 - - 398980 184.77 413690 120.19
Mat26 2464 744 714557309 9201.62 1806502 1640.60 2047316 706.10
Mat317 85050 24435 - - - - - -
linvrinv8 6337 1920 - - - - - -
linvrinv9 9154 2754 - - - - - -
equilarge l5 18519 4478 - - - - - -
pyhala...4-01 31795 9638 9314604 781.87 - - 4020593 4057.72
clauses-2 272784 75527 - - 9093 10.36 63930 10.69
clauses-4 1002957 267766 - - 63631 183.09 248392 123.13
clauses-6 2623082 683995 - - 1182887 5875.73 2689386 850.98
clauses-8 5687554 1461771 - - - - 11007228 7656.73
clauses-10 8901946 2270929 - - - - 12505 3016.64
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search was performed using the LSGB heuristic without conflict clause learning. The second solver

is funcsat configured with its default parameters. The third solver is SBSAT + funcsat configured to

preprocess input in exactly the same manner as the first solver. The SBSAT component has been

made into a library that provides inferences and witness clauses to funcsat. The funcsat component

manages conflict clause computation, BCP, and heuristic computation. This third approach solves

all the benchmarks that SBSAT and funcsat solved, along with some that neither SBSAT nor funcsat

are able to solve independently. This provides evidence that using state-based SAT methods can

enhance the performance of solvers and enables them to solve harder problems than without.

Table 5.2 on the next page demonstrates the benefits of Smurf-based witness clause generation

and minimization (see Section 5.1.1 on page 68). This table shows that solver performance can be

enhanced by generating minimal witness clauses from Smurfs. In the worst cases, neither total

decisions nor decisions per second are significantly impacted by Smurf witness clause minimization

and, with few exceptions, both total decisions and total runtime are reduced.

Effects of Precomputation on Solving Time

Table 5.3 on page 75 demonstrates the benefits of building Smurfs on demand versus fully pre-

computing them (see Section 4.4 on page 61). In both cases, CNF pattern matching was applied

to reverse engineer common gates from the original CNF. Existential quantification and infer-

ence propagation were interleaved with Ve-TreeIter. Ve-TreeIter was configured to use the

VarScore clustering heuristic and given a maximum limit of nine variables per conjoined BDD.

The table shows that building Smurfs on demand can reduce runtime in cases where the space

the solver needs to search is much less than the total searchable space. This can be seen both in

the reduced runtime on most benchmarks and reduced number of Smurf states computed during

search. When the space searched is relatively large compared to the total searchable space, lazy

Smurf computation can slow the search down but not by a considerable amount. Also, since

funcsat’s heuristic was used, the number of decisions stays the same whether or not Smurfs are

precomputed. This demonstrates that the exact same search space was explored, as expected.
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Table 5.2 — Results of SBSAT + funcsat solving benchmarks of [120] and [67] both with and without Smurf-
based witness clause minimization.

SBSAT + funcsat

No Minimization Minimization

Instance Clauses Vars Choices Time Choices Time

par8-1-c 254 64 0 0.01 0 0.00
par8-1 1149 350 0 0.01 0 0.01
par16-1-c 1264 317 3673 0.22 998 0.08
par16-1 3310 1015 2345 0.14 3104 0.16
par32-1-c 5254 1315 - - - -
par32-1 10277 3176 - - - -

barrel5 5383 1407 3186 0.58 4235 0.60
barrel6 8931 2306 12360 3.36 12892 2.60
barrel7 13765 3523 29948 15.75 41513 10.62
barrel8 20083 5106 40866 21.86 72499 24.60
barrel9 36606 8903 394673 217.61 411089 149.98

ssa2670-130 3321 1359 52 0.24 45 0.09
ucsc-bf1355-348 7271 2286 0 0.36 0 0.15
dubois100 800 300 0 0.01 0 0.01

dlx1 c 1614 287 1416 0.09 744 0.08
1dlx c mc... 3725 766 2956 0.16 2052 0.14
dlx2 cc bug18 20208 2043 2370 1.06 2102 1.03
2dlx ca mc... 24640 3186 32099 2.82 22939 1.78
2dlx cc mc... 41704 4524 48293 7.19 43900 4.98
2dlx cc...bug019 48232 4824 29176 5.00 6611 1.16
9vliw bp mc 179492 19148 759120 79.14 601164 52.30

c499 1870 606 405 0.08 405 0.07
3bitadd 32 32316 4480 158243 41.70 3821 0.68
x1.1 16 122 46 0 0.00 0 0.00
x2 128 1018 382 - - - -
longmult12 18645 5974 79083 35.57 72934 22.39
longmult14 22389 7176 93716 39.86 90779 32.48
longmult15 24351 7807 77697 32.34 77959 27.93
ibm...3-k95 272059 73525 49241 7.28 49342 6.20
ibm...23-k100 861175 207606 13735678 5674.71 4385430 751.76

hanoi6 39666 4968 606669 250.73 413690 120.19
Mat26 2464 744 2553273 1163.67 2047316 706.10
Mat317 85050 24435 - - - -
linvrinv8 6337 1920 - - - -
linvrinv9 9154 2754 - - - -
equilarge l5 18519 4478 - - - -
pyhala...4-01 31795 9638 5407158 9942.07 4020593 4057.72
clauses-2 272784 75527 64913 14.96 63930 10.69
clauses-4 1002957 267766 673060 190.47 248392 123.13
clauses-6 2623082 683995 1910619 1649.51 2689386 850.98
clauses-8 5687554 1461771 - - 11007228 7656.73
clauses-10 8901946 2270929 12103 3542.00 12505 3016.64
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Table 5.3 — Results of SBSAT + funcsat solving benchmarks of [120] and [67] both with and without lazy Smurf
precomputation.

SBSAT + funcsat

Precomputed Smurfs On Demand Smurfs

Instance Clauses Vars Choices States Time Choices States Time

par8-1-c 254 64 0 0 0.00 0 0 0.00
par8-1 1149 350 0 0 0.02 0 0 0.01
par16-1-c 1264 317 998 11774 0.11 998 1554 0.08
par16-1 3310 1015 3104 15494 0.21 3104 1600 0.16
par32-1-c 5254 1315 - - - - - -
par32-1 10277 3176 - - - - - -

barrel5 5383 1407 4235 20681 0.58 4235 6640 0.60
barrel6 8931 2306 12892 25907 2.44 12892 10260 2.60
barrel7 13765 3523 41513 32575 12.06 41513 13575 10.62
barrel8 20083 5106 72499 26331 26.60 72499 12015 24.60
barrel9 36606 8903 411089 92913 162.18 411089 63019 149.98

ssa2670-130 3321 1359 45 9658 0.13 45 390 0.09
ucsc-bf1355-348 7271 2286 0 0 0.18 0 0 0.15
dubois100 800 300 0 0 0.01 0 0 0.01

dlx1 c 1614 287 744 31372 0.12 744 3597 0.08
1dlx c mc... 3725 766 2052 73840 0.39 2052 7514 0.14
dlx2 cc bug18 20208 2043 2102 645328 3.94 2102 30860 1.03
2dlx ca mc... 24640 3186 - - - 22939 42206 1.78
2dlx cc mc... 41704 4524 - - - 43900 71855 4.98
2dlx cc...bug019 48232 4824 6611 731867 4.29 6611 96193 1.16
9vliw bp mc 179492 19148 601164 3028316 73.74 601164 147926 52.30

c499 1870 606 405 8563 0.09 405 745 0.07
3bitadd 32 32316 4480 3821 8653 0.74 3821 5132 0.68
x1.1 16 122 46 0 0 0.01 0 0 0.00
x2 128 1018 382 - - - - - -
longmult12 18645 5974 72934 74431 27.90 72934 17232 22.39
longmult14 22389 7176 90779 75509 34.77 90779 16854 32.48
longmult15 24351 7807 77959 87341 29.34 77959 17032 27.93
ibm...3-k95 272059 73525 49342 172915 6.69 49342 5842 6.20
ibm...23-k100 861175 207606 4385430 388146 608.00 4385430 138582 751.76

hanoi6 39666 4968 413690 1025187 137.13 413690 484532 120.19
Mat26 2464 744 2047316 57920 733.37 2047316 52044 706.10
Mat317 85050 24435 - - - - - -
linvrinv8 6337 1920 - - - - - -
linvrinv9 9154 2754 - - - - - -
equilarge l5 18519 4478 - - - - - -
pyhala...4-01 31795 9638 4020593 429719 4872.02 4020593 153526 4057.72
clauses-2 272784 75527 63930 291895 13.20 63930 37848 10.69
clauses-4 1002957 267766 248392 342277 128.74 248392 48858 123.13
clauses-6 2623082 683995 2689386 385633 820.24 2689386 56893 850.98
clauses-8 5687554 1461771 11007228 459393 8975.63 11007228 83098 7656.73
clauses-10 8901946 2270929 12505 563008 2719.96 12505 51693 3016.64
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Effects of Preprocessing on Solving Time

Figure 5.2 on page 78, Figure 5.3 on page 79, and Figure 5.4 on page 80 demonstrate the effect that

preprocessing has on the search processes. The four benchmarks used here were chosen because

they exhibit a wide range of behaviors and are representative of many different families of SAT

problems. Each of the benchmarks were run thirty-one times using the funcsat + SBSAT approach.

For the first run, a limit of zero was placed on the maximum number of variables per BDD allowed

to be considered during BDD clustering. This limit was incremented for each subsequent run. The

first figure, Figure 5.2 on page 78, provides graphs for each benchmark that show the solving time

versus the BDD clustering variable limit. Figure 5.3 on page 79 shows the number of propagations

required to solve each benchmark versus the BDD clustering variable limit. On the whole, these

two sets of graphs show that preprocessing can reduce the solving time of an instance, and, in every

case, effectively decreases the total number of propagations needed to solve an instance.

Since, as is common knowledge, the bulk of SAT search is spent in BCP [24, 150], a decrease

in the total number of propagations should decrease total time. This effect is seen near the front

of the graphs of Figures 5.2 and 5.3. However, the trend reverses itself and solving time increases

towards the back part of the graphs. The increase is due to larger and larger BDDs being created

by BDD clustering as the limit grows. As the size of BDDs grow, the number of Smurf nodes

needed to represent the BDDs also grows, and quickly becomes prohibitively expensive. This can

be seen in Figure 5.4 on page 80 which shows the number of Smurf nodes created during search

versus the BDD clustering variable limit.

Notice how the graphs of Figure 5.2 are similar to an overlay of the graphs of Figures 5.3 and 5.4.

These figures demonstrate that as propagations go down, search time decreases, but as the number

of Smurf nodes grows, search time increases. The cost of building Smurfs, even on demand, is

prohibitively high for moderate to large size BDDs and can quickly counteract even large drops in

the number of propagations.

Fortunately, there is a local minimum for total time in the middle of each graph. This demon-

strates that the preprocessing methods introduced in Chapter 3 on page 30 can be effective at

reducing solving times, but if overused, can harm the search. It is also possible that solving times
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could be reduced if the Smurf generation component of SBSAT was optimized. At the moment, SB-

SAT is considered to be research grade and preprocessing will become more of a benefit as Smurf

creation is further optimized by, for example, further increasing node sharing between Smurfs

(Smurf normalization goes some way in doing this), adding more special Smurf types, increasing

caching performance and memory management, and creating specialized co-factoring and inference

discovery functions (two BDD functions called often during Smurf creation).
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Figure 5.2 — These graphs show the effects of preprocessing on the solving time of the longmult12, 2dlx cc mc ex bp f, barrel8, and clauses-2 bench-
marks.

C
h
ap

ter
5.

S
tate-b

ased
S
A
T

S
earch

78
5.1.

S
u
p
p
ort

for
C
D
C
L
T
ech

n
iqu

es



 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0  5  10  15  20  25  30

Pr
op

ag
at

io
ns

Maximum Number of Variables per BDD

Effect of Preprocessing on the Number of Propagations of longmult12

Total Propagations
Total Propagations Moving Average

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0  5  10  15  20  25  30

Pr
op

ag
at

io
ns

Maximum Number of Variables per BDD

Effect of Preprocessing on the Number of Propagations of 2dlx_cc_mc_ex_bp_f

Total Propagations
Total Propagations Moving Average

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0  5  10  15  20  25  30

Pr
op

ag
at

io
ns

Maximum Number of Variables per BDD

Effect of Preprocessing on the Number of Propagations of barrel8

Total Propagations
Total Propagations Moving Average

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0  5  10  15  20  25  30

Pr
op

ag
at

io
ns

Maximum Number of Variables per BDD

Effect of Preprocessing on the Number of Propagations of clauses-2.renamed-as.sat05-1961

Total Propagations
Total Propagations Moving Average

Figure 5.3 — These graphs show the effects of preprocessing on the number of propagations taken to solve the longmult12, 2dlx cc mc ex bp f, barrel8,
and clauses-2 benchmarks.
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Figure 5.4 — These graphs show the effects of preprocessing on the number of Smurf nodes needed to solve the longmult12, 2dlx cc mc ex bp f,
barrel8, and clauses-2 benchmarks.
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5.2 Support for Special Purpose Solvers

Recent interest in Satisfiability Modulo Theories (SMT), the mixing of SAT solvers with specialized

theory solvers, has enabled developers to create powerful solvers. This is, in part, due to both heavy

use of extensible SAT solvers as well as use of an input language (called SMT-lib) that is much more

expressive than CNF. Allowing the user to write high-level constraints, such as z ≤ x+y where x, y,

and z are integers, provides special purpose solvers with information that enables them to make cuts

in the search space that could not easily be made with purely CNF input. This section discusses

the use of special purpose solvers in support of stronger search and Smurf compression. As an

example, introduced here are techniques for discovering and memoizing parity constraints (XORs)

on Smurf transitions and making use of Gaussian elimination. Finding XOR factors is pertinent to

state-based SAT because non-clausal domains, such as verification, have constraints that naturally

partition into linear (XOR) and non-linear components.

Section 4.1.5 on page 55 shows that Smurfs can be further compressed by factoring out XOR

components when possible and handing them to a special purpose solver when transitioned into

during search. Specifically, XOR constraints memoized on Smurf transitions can be handed off to a

backtrack-capable Gaussian elimination solver during search. Gaussian elimination, an algorithm

with complexity polynomial in the number of variables (O(n3)), can efficiently detect inferences

and conflicts existing in a conjunction of XOR constraints. This is in contrast to some recent

CDCL solvers that also make use of Gaussian elimination (e.g. March eq [79], MoRsat [43], and

CryptoMiniSat [132]). These solvers discover XOR functions during preprocessing, populate and row-

reduce the Gaussian elimination table, and then periodically check the table against the current

partial assignment to discover new inferences and conflicts. These solvers may also use their learned

clause database to find new global XOR constraints, adding those to their Gaussian elimination table

during search.

Described here are the techniques needed to discover and remove factors from BDDs. A Boolean

function f is a factor of a Boolean function g if and only if (f ∧ g) ≡ False, i.e. the negation of

the factor conjoined with the original function is False (unsatisfiable). As an example, consider
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the following non-linear Boolean function:

x1x2 ⊕ x2x3 ⊕ x1 ⊕ x3 ≡ True

which has two XOR factors, namely:

x1 ⊕ x3 ≡ True, x2 ≡ False

Figure 5.5 shows that BDD operations can be used to verify conjectures about potential factors.

This figure and many others in this section were created by the BDD Visualizer [140].

order(x4, x3, x2, x1)

xor(and(x1, x2), and(x2, x3), x1, x3)) ; $1

; Is (x1 ⊕ x3 ≡ True) a factor of

; (x1x2 ⊕ x2x3 ⊕ x1 ⊕ x3 ≡ True)?

and(not(xor(x1, x3)), $1) ; $2

; Is (x2 ≡ False) a factor of

; (x1x2 ⊕ x2x3 ⊕ x1 ⊕ x3 ≡ True)?
and(x2, $1) ; $3

print(or($2, $3))

F

Figure 5.5 — A figure generated by the BDD Visualizer [140] showing that x1 ⊕ x3 ≡ True and x2 ≡ False
are factors of x1x2 ⊕ x2x3 ⊕ x1 ⊕ x3 ≡ True. The input to the BDD Visualizer is given on the left
and the generated BDD (the False leaf node) is produced on the right.

Unfortunately, using this method to find XOR and constant factors requires guessing the potential

factors, of which there are 2n+1 for functions with n variables. However, BDD operations can be

used to discover all possible XOR factors without guessing. For the next example, the following

degree 3 function (named complex) will be used. This function is visualized in Figure 5.6:

x1x3x4 ⊕ x3x4 ⊕ x1x2x4 ⊕ x1x2x3 ⊕ x2x3 ⊕ x1x2 ≡ True
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order(x4, x3, x2, x1)

; $1 - Complex function

xor(and(x1, x3, x4),
and(x3, x4),
and(x1, x2, x4),
and(x1, x2, x3),
and(x2, x3),
and(x1, x2))

print($1)

x3

x1

F

x4 x4

x2

x3

T

x2

Figure 5.6 — A visualization of the BDD for the complex function: x1x3x4⊕x3x4⊕x1x2x4⊕x1x2x3⊕x2x3⊕
x1x2 ≡ True.

This function has one XOR factor. The following quadratic function will be used to help discover

the factor automatically:

c1x1 ⊕ c2x2 ⊕ c3x3 ⊕ c4x4 ⊕ cT ≡ True

The ci variables, where 1 ≤ i ≤ n, and the cT variable in the quadratic function are coefficients that

act as selectors, denoting which xi variables are part of the resulting XOR factors or whether the

XOR factor is negated, as is the case when cT takes value True, i.e. assigning a value True or False

to each of the n+ 1 coefficients will result in one of 2n+1 XOR or constants. It’s worth noting that

the technique described here can be used to search for factors of any form; simply use a different

quadratic function to find factors of a different form.

All configurations of the coefficients that denote XOR factors of the complex function from above

can be found automatically. This requires two steps and is done by first substituting the quadratic

function for f and the complex function for g in (f ∧ g). This gives the function:

((c1x1 ⊕ c2x2 ⊕ c3x3 ⊕ c4x4 ⊕ cT) ∧

(x1x3x4 ⊕ x3x4 ⊕ x1x2x4 ⊕ x1x2x3 ⊕ x2x3 ⊕ x1x2)).

See Figure 5.7 on the following page for a visualization of the BDD for this function.
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order(x4, c4, x3, c3, x2, c2, x1, c1, cT )

; $1 - Quadratic function

xor(and(c1, x1), and(c2, x2), and(c3, x3),
and(c4, x4), cT )

; $2 - Complex function
xor(and(x1, x3, x4),

and(x3, x4),
and(x1, x2, x4),
and(x1, x2, x3),
and(x2, x3),
and(x1, x2))

; $3 - Find all possible factors, step 1

and(not($1), $2)

print($3)

c2

x2

x1 x1

x2

c3

x3

c3

cT

x3

x1

c3

c2

c3

c2

c4

c3

x2

x3

c1

F

x2

x4 x4

x1

T

x2 x2

c1

c4

x3

c2

Figure 5.7 — A visualization of the BDD for the conjunction of the quadratic and complex functions.

As mentioned earlier, the ci variables denote which xi variables are part of the XOR factors. The

second step to finding XOR factors is to existentially quantify away the xi variables. This produces

the function where every falsifying assignment represents a valid configuration of the coefficients,

and hence an XOR factor:

∃xi ((c1x1 ⊕ c2x2 ⊕ c3x3 ⊕ c4x4 ⊕ cT) ∧

(x1x3x4 ⊕ x3x4 ⊕ x1x2x4 ⊕ x1x2x3 ⊕ x2x3 ⊕ x1x2)).

This function is visualized in Figure 5.8 on the next page.

Each factor of the complex function is denoted by a path from the root to the False leaf of the

BDD. In Figure 5.8 on the following page, there are two paths to False, namely,

1. cT, c1, c2, c3, c4

2. cT , c1, c2, c3, c4

These paths correspond to the XOR and constant factors of the complex function. The coefficients
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order(x4, c4, x3, c3, x2, c2, x1, c1, cT )

; $1 - Quadratic function

xor(and(c1, x1), and(c2, x2), and(c3, x3),
and(c4, x4), cT )

; $2 - Complex function
xor(and(x1, x3, x4),

and(x3, x4),
and(x1, x2, x4),
and(x1, x2, x3),
and(x2, x3),
and(x1, x2))

; $3 - Find all possible factors, step 1

and(not($1), $2)

; $4 - Find all possible factors, step 2
exist($3, x1, x2, x3, x4) ; $4

print($4)

c3

c1

F

c2c2

c3

c4

cT

T

c1

c4

Figure 5.8 — A visualization of the BDD such that every path to False represents an XOR factor of the complex
function.
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taking value True represent these factors, namely:

True ≡ True, x2 ⊕ x4 ≡ True

The first factor is trivial; True is a factor of every Boolean function. The second factor is more

interesting, and was found automatically from among the 25 possible XOR factors. During Smurf

creation, this factor can be memoized on a Smurf transition. The Smurf state that is transitioned

into has this factor removed. An implementation of generalized co-factoring, named Constrain,

can be used to remove this factor from the original complex function. This operation is illustrated

in Figure 5.9 on the next page. As described in Section 2.3 on page 18, Constrain takes two

BDDs as arguments, f and c, and if c is a factor of f , returns a BDD g such that f ≡ g ∧ c.

Of course, there may be many such BDDs g. Constrain is not a purely logical operation and

can return logically different BDDs depending on BDD variable ordering. In other words, many of

the different possible BDDs g, such that f ≡ g ∧ c, can be generated by Constrain by selecting

different BDD variable orderings. The variable order that seems to work best, i.e. removes the

most of c from f , is when the variables in c are nearest the leaves of the BDD and the variables

in f but not in c are nearest the root. From this standpoint, Constrain can basically be thought

of as performing Boolean division. Boolean division is a complex subject, generally used when

performing logic decomposition during circuit synthesis (see [134] for an introduction). Figure 5.9

on the next page shows the result of using Constrain to remove the factor x2 ⊕ x4 ≡ True from

the complex function.

The resulting function is x1x2 ⊕ x3 ⊕ x1x3 ≡ True, which can also be written as ite(x1, x2, x3).

This means that the original complex function can be factored into the following two functions:

x1x2 ⊕ x3 ⊕ x1x3 ≡ True

x2 ⊕ x4 ≡ True.

This representations is much simpler than the original complex function:
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order(x4, x3, x2, x1)

; $1 - complex function

xor(and(x1, x3, x4),
and(x3, x4),
and(x1, x2, x4),
and(x1, x2, x3),
and(x2, x3),
and(x1, x2))

; Remove the XOR factor

print(constrain($1, xor(x2, x4))

x1

x3

T

x2

F

Figure 5.9 — A visualization of the BDD for the complex function after removing the XOR factor x2 ⊕ x4 ≡ True
using Constrain

x1x3x4 ⊕ x3x4 ⊕ x1x2x4 ⊕ x1x2x3 ⊕ x2x3 ⊕ x1x2 ≡ True

5.2.1 Experimental Results

These techniques have been implemented in SBSAT and provide the means to memoize XOR factors

on Smurf transitions, drastically reducing the size of a Smurf. They also allow search to make

use of a Gaussian elimination solver to derive inferences and conflicts earlier. Figure 5.10 on the

following page provides a diagram showing the communication between the two types of solvers.

Three tables of results are given. The first, Table 5.4 on page 89, shows results of PicoSAT,

CryptoMiniSat, and SBSAT solving an unsatisfiable suite of SAT competition benchmarks that

were translated into CNF from conjunctions of XOR constraints. As such, each benchmark can

be solved by discovering XOR constraints and using Gaussian elimination. Results of PicoSAT

demonstrate that purely resolution-based solvers perform poorly on conjunctions of XORs. A “-”

symbol in PicoSAT’s “Choices” column indicates that more than 232 decisions were needed to solve

the particular benchmark and the corresponding time listed in the next column is the number

of seconds PicoSAT took to either solve the benchmark or reach 232 decisions. CrytoMiniSat was

configured to make heavy use of Gaussian elimination and is able to solve every benchmark with
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Add New XOR

GELIM

Initial XORs

SBSAT

Push State (Decision Point)

Pop State (Backtrack)

Propagate Inference

Restart

Enqueue Inference

SAT / UNSAT

Initial SMURFs

Figure 5.10 — Communication between SBSAT and a backtrack capable Gaussian elimination solver.

few decisions. CNF pattern matching and Gaussian elimination were used by SBSAT, which solved

every benchmark without needing to make any decisions.

Table 5.5 on page 91 shows the results of the same three solvers on SAT competition benchmarks

that were translated into CNF from satisfiable conjunctions of XOR constraints. As with the previous

benchmarks, these can be solved by discovering XOR constraints and using Gaussian elimination,

but, due to being under constrained, a small amount of additional branching is required. Again,

PicoSAT and CryptoMiniSat are shown along side SBSAT. For this set of benchmarks, SBSAT was

configured to also perform BDD clustering and then either to build Smurfs with and without

factoring and memoizing XOR factors on Smurf transitions. The column where XOR factors were not

memoized shows that BDD clustering blurs the lines between XOR constraints and hence their power

to contribute to the Gaussian elimination solver is considerably reduced. The last column (“with

XOR factors”) demonstrates that the harmful effects of BDD clustering on the power of Gaussian

elimination are removed by factoring out and memoizing XOR factors on Smurf transitions. In this

table the “-” symbol indicates that more than 50000 seconds were needed to solve the corresponding
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Table 5.4 — Statistics of PicoSAT,CryptoMiniSat, and SBSAT solving unsatisfiable sets of XOR functions encoded
into CNF.

PicoSAT CryptoMiniSat SBSAT

Instance Clauses Vars Choices Time Choices Time Choices Time

urquhart2 25bis 96 36 1130 0.0 1858 0.01 0 0.01
urquhart2 25 160 60 37437 0.1 45867 0.20 0 0.02
urquhart3 25bis 264 99 2263042 6.5 3010 0.02 0 0.21
urquhart3 25 408 153 80223721 297.7 205289 1.02 0 0.28
urquhart4 25bis 512 192 - 13021.6 217156 1.00 0 0.28
urquhart4 25 768 288 - 18673.7 3296 0.03 0 0.46

x1.1 40 314 118 10214388 34.8 2843 0.03 0 0.24
x1.1 44 346 130 70207716 261.5 3232 0.02 0 0.21
x1.1 48 378 142 13980039 41.9 3150 0.02 0 0.30
x1.1 56 442 166 - 12150.4 295994 1.52 0 0.24
x1.1 64 506 190 - 14765.6 302231 1.84 0 0.22
x1.1 72 570 214 - 16926.5 313907 1.79 0 0.37
x1.1 80 634 238 - 17314.4 3089 0.02 0 0.34
x1.1 96 762 286 - 20874.6 3199 0.02 0 0.35
x1.1 128 1018 382 - 31616.9 3455 0.04 0 0.68

x1 36 282 106 2527092 7.1 3131 0.02 0 0.22
x1 40 314 118 9089985 29.8 3342 0.02 0 0.26
x1 44 346 130 53476293 190.0 3088 0.02 0 0.28
x1 48 378 142 17775926 60.9 3266 0.02 0 0.27
x1 56 442 166 - 11768.9 206229 0.92 0 0.30
x1 64 506 190 - 13512.5 295054 1.52 0 0.26
x1 72 570 214 - 17540.8 335951 2.98 0 0.33
x1 80 634 238 - 18647.8 3127 0.03 0 0.35
x1 96 762 286 - 22828.3 3436 0.04 0 0.44
x1 128 1018 382 - 28004.4 3268 0.03 0 0.58

x2 40 314 118 8869047 31.5 2898 0.04 0 0.21
x2 44 346 130 104373538 440.4 3008 0.03 0 0.24
x2 48 378 142 109551245 464.8 2834 0.02 0 0.27
x2 56 442 166 - 12859.3 211062 1.49 0 0.30
x2 64 506 190 - 16051.1 220468 1.27 0 0.34
x2 72 570 214 - 17991.2 330922 1.93 0 0.30
x2 80 634 238 - 18258.3 2888 0.03 0 0.34
x2 96 762 286 - 21182.9 3319 0.04 0 0.40
x2 128 1018 382 - 29657.0 3624 0.02 0 0.60
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benchmark.

Table 5.6 on page 92 shows the results of the solvers on SAT competition benchmarks that

were translated into CNF from both unsatisfiable and satisfiable conjunctions of a mixture of XOR

constraints, AND/OR gates, and clauses. As such, many of these benchmarks require branching

and are greatly assisted by CNF pattern matching, BDD clustering, XOR factor memoization, and

Gaussian elimination. All three solvers are identically to how they are in Table 5.5 on the following

page.
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Table 5.5 — Statistics of PicoSAT, CryptoMiniSat, and SBSATsolving satisfiable sets of XOR functions encoded into CNF. Some benchmarks required
an excess of 50000 seconds. There are indicated by “-” in the table.

SBSAT

PicoSAT CryptoMiniSat Without XOR Factors With XOR Factors

Instance Clauses Vars Choices Time Choices Time Choices Time Choices Time

mod2-rand3bip-sat-200-1 800 200 732171 11.4 2363 0.05 2407934 18.25 66 0.49
mod2-rand3bip-sat-200-2 800 200 492595 8.5 259718 16.21 1422251 17.17 73 0.49
mod2-rand3bip-sat-200-3 800 200 1211954 19.3 2354 0.05 31747848 299.15 73 0.59
mod2-rand3bip-sat-210-1 840 210 2314671 39.5 2317 0.05 41408558 275.08 76 0.55
mod2-rand3bip-sat-210-2 840 210 690088 10.2 2337 0.05 21797752 181.55 67 0.56
mod2-rand3bip-sat-210-3 840 210 3742815 68.6 2419 0.05 8513244 93.34 72 0.60
mod2-rand3bip-sat-220-1 880 220 1609693 27.9 2417 0.05 29837658 237.90 73 0.57
mod2-rand3bip-sat-220-2 880 220 10754958 221.7 2383 0.05 117109188 1300.98 73 0.61
mod2-rand3bip-sat-220-3 880 220 4714361 85.0 2439 0.05 49840558 430.35 76 0.59
mod2-rand3bip-sat-230-1 920 230 11336075 229.8 2418 0.05 25283878 231.41 77 0.60
mod2-rand3bip-sat-230-2 920 230 14566733 294.4 2352 0.04 680661489 8417.81 75 0.66
mod2-rand3bip-sat-230-3 920 230 2732624 50.2 2488 0.06 12524208 134.96 83 0.60
mod2-rand3bip-sat-240-1 960 240 22657621 489.4 2377 0.05 41142493 461.68 82 0.64
mod2-rand3bip-sat-240-2 960 240 3253346 67.7 2391 0.04 118284155 1090.84 84 0.63
mod2-rand3bip-sat-240-3 960 240 3244083 60.5 2416 0.05 81969106 969.28 82 0.81
mod2-rand3bip-sat-250-1 1000 250 4335960 95.3 2358 0.05 364526854 4459.51 84 0.68
mod2-rand3bip-sat-250-2 1000 250 5601671 119.0 2408 0.05 329904878 3519.39 83 0.68
mod2-rand3bip-sat-250-3 1000 250 21677872 533.0 2418 0.05 1256588334 15024.89 83 0.70
mod2-rand3bip-sat-260-1 1040 260 28610815 733.5 2383 0.05 2229157458 18340.39 87 0.69
mod2-rand3bip-sat-260-2 1040 260 68793912 1951.7 2450 0.05 524055195 3353.07 87 0.82
mod2-rand3bip-sat-260-3 1040 260 57607402 1677.9 2351 0.05 193780814 1686.81 91 0.72
mod2-rand3bip-sat-270-1 1080 270 321106608 11536.1 2486 0.06 1349285293 12367.49 81 0.76
mod2-rand3bip-sat-270-2 1080 270 232531238 8527.1 2410 0.05 2241682992 22645.08 92 0.74
mod2-rand3bip-sat-270-3 1080 270 51349937 1580.4 2443 0.04 2528576057 25516.49 92 0.77
mod2-rand3bip-sat-280-1 1120 280 63730615 2043.7 2517 0.07 1821830240 12133.98 94 0.77
mod2-rand3bip-sat-280-2 1120 280 329644078 14201.8 2441 0.06 3309838754 24877.75 89 0.70
mod2-rand3bip-sat-280-3 1120 280 57692392 1898.3 2398 0.06 - - 95 0.68
mod2-rand3bip-sat-290-1 1160 290 125689528 4554.9 2384 0.06 - - 95 0.79
mod2-rand3bip-sat-290-2 1160 290 532869776 24150.9 2469 0.05 3135243932 35747.49 102 0.72
mod2-rand3bip-sat-290-3 1160 290 251893381 10153.5 2449 0.04 2744688261 45144.08 95 0.84
mod2-rand3bip-sat-300-1 1200 300 363501140 16312.5 2469 0.04 - - 98 0.90
mod2-rand3bip-sat-300-2 1200 300 240947655 9348.1 2490 0.06 1543341849 37301.21 97 0.80
mod2-rand3bip-sat-300-3 1200 300 645756972 30283.4 2397 0.06 - - 95 0.88
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Table 5.6 — Statistics of PicoSAT, CryptoMiniSat, and SBSATsolving a satisfiable and unsatisfiable benchmarks with a mixture of linear (XOR) and
non-linear functions encoded into CNF.

SBSAT

PicoSAT CryptoMiniSat Without XOR Factors With XOR Factors

Instance Clauses Vars Choices Time Choices Time Choices Time Choices Time

pmg-11-UNSAT 562 169 10670017 201.4 25490361 11920.04 19705377 72.70 0 0.64
pmg-12-UNSAT 632 190 56286374 1226.7 - - 185150621 758.63 0 0.62
pmg-13-UNSAT 1362 409 - - - - - - 0 1.40
pmg-14-UNSAT 1922 577 - - - - - - 0 2.63

par8-1-c 254 64 3 0.0 26 0.02 0 0.03 0 0.01
par8-2-c 270 68 7 0.0 22 0.02 55 0.68 56 0.27
par8-3-c 298 75 5 0.0 10 0.02 0 0.03 0 0.01
par8-4-c 266 67 10 0.0 29 0.01 56 0.82 54 0.28
par8-5-c 298 75 13 0.0 19 0.01 58 1.98 53 0.32

par8-1 1149 350 22 0.0 15 0.02 0 0.05 0 0.02
par8-2 1157 350 13 0.0 11 0.02 0 0.05 0 0.02
par8-3 1171 350 30 0.0 11 0.02 0 0.06 0 0.02
par8-4 1155 350 9 0.0 10 0.02 0 0.07 0 0.04
par8-5 1171 350 23 0.0 29 0.01 340 2.03 338 0.54

par16-1-c 1264 317 4971 0.1 5384 0.09 5223 5.45 290 1.24
par16-2-c 1392 349 7794 0.2 812 0.04 10669 7.25 293 1.60
par16-3-c 1332 334 1744 0.0 6579 0.12 5418 5.38 309 2.00
par16-4-c 1292 324 913 0.0 2985 0.06 3111 9.50 274 1.10
par16-5-c 1360 341 2257 0.0 1431 0.03 320 2.98 340 1.29

par16-1 3310 1015 5250 0.1 2790 0.05 5205 8.08 1016 3.46
par16-2 3374 1015 6499 0.2 647 0.03 3166 8.32 1116 3.97
par16-3 3344 1015 5098 0.1 2113 0.05 5194 14.21 960 2.87
par16-4 3324 1015 319 0.0 2062 0.04 8132 5.40 1092 3.58
par16-5 3358 1015 3528 0.1 1169 0.03 27961 7.46 1131 3.22

par32-1-c 5254 1315 473449798 52791.7 - - 138677 13.00 9782 5.05
par32-2-c 5206 1303 - - 42024560 32746.43 59675 19.48 1227 4.38
par32-3-c 5294 1325 580561571 61445.1 - - 610765 25.07 90955 30.07
par32-4-c 5326 1333 186730471 23431.3 - - 1770005 132.28 153058 8.38
par32-5-c 5350 1339 400511789 51084.9 - - 15280 7.36 10701 5.08

par32-1 10277 3176 294096091 77129.5 28902 1.05 201586 38.38 309385 18.83
par32-2 10253 3176 76397975 10670.7 24571 1.01 810034 45.42 51529 8.68
par32-3 10297 3176 96479963 16810.6 - - 2227730 219.94 143826 12.12
par32-4 10313 3176 204408467 30585.0 - - 1028205 55.48 83297 9.70
par32-5 10325 3176 50826882 8274.0 - - 1352884 69.88 60871 9.72
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Chapter 6

Conclusion

6.1 Contributions

The many new techniques introduced here have been implemented and incorporated into SBSAT.

These techniques, which include methods for preprocessing, precomputation, and state-based SAT

search, are shown to significantly enhance SBSAT both in terms of scalability and power, enabling it

to solve many problems that it could not solve before. Also, a teaching tool, the BDD Visualizer [140],

has been developed and already used by many people to learn about and explore BDD-based

techniques on their own problems.

Building one Smurf per CNF clause denies every advantage to state-based SAT search over

CDCL solvers. The translation from a constraint rich user-domain problem into CNF often obscures

the original structure, structure that can make it feasible for a state-based SAT solver to solve

the problem. To overcome this deficiency, Chapter 3 on page 30 introduced new methods for

preprocessing both CNF instances and conjunctions of BDDs. These preprocessing methods have

been implemented in SBSAT, evaluated on standard SAT benchmarks for their ability to recover

structure from CNF input, and were found to outperform previous methods.

Chapter 4 on page 48 introduced new data structures and precomputation methods for trans-

forming preprocessed input into Smurfs. The new data structures provide special Smurf repre-

sentations for common Boolean functions, specifically those produced by preprocessing. Special
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Smurfs are more compact than their general Smurf counterparts, only taking linear space (or

quadratic in the case of cardinality constraints) instead of exponential, as is the case with every

corresponding general Smurf. Special Smurfs, like general Smurfs, are arc-consistent and support

efficient inference propagation and heuristic computation during state-based SAT search. However,

special Smurfs have only been introduced for a handful of common Boolean functions, too few to

truly scale to industrial problems where user-level constraints may not fit a special Smurf type.

To support scalability, new techniques were introduced to both increase sharing between Smurfs

and delay prohibitively expensive precomputation. Each of the new special Smurf data structures

and precomputation methods have been implemented in SBSAT and evaluated. Results show that

the various techniques lead to faster search and a smaller memory footprint, greatly increasing

scalability of SBSAT.

The preprocessing and precomputation methods introduced in previous chapters were mainly

developed in support of state-based SAT search. The preprocessing, precomputation, and search

algorithms in SBSAT have been compiled into a library that can be made use of by off-the-shelf

CDCL solvers. This means that SBSAT as a library can be used to add arbitrary Boolean constraints

to any CDCL solver, without translating to CNF, creating special purpose constraints, sacrificing

arc-consistency, or decreasing the power of witness clauses. This library has been integrated into

funcsat, an extensible state of the art CDCL solver and evaluated. Experimental results of this

evaluation show that allowing SBSAT to maintain user-domain constraints, rather than translating

into CNF, can speed up search as well as shrink the size of the search tree. However, there seems

to be a local minimum in terms of how much preprocessing should be done where state-based SAT

techniques transition from helping to hurting.

A Gaussian elimination solver was integrated into SBSAT and used to demonstrate methods

for adapting other constraint solving techniques to state-based SAT. Specifically, methods were

introduced that show how to factor XOR constraints from Boolean functions, leading to the creation

of special Smurf transitions that infer XOR constraints during search. These XOR factors are handed

off to the Gaussian elimination solver, that can produce inferences much earlier during search.

This approach was experimentally evaluated against other similar techniques and found to be more
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robust.

This dissertation showed how the state-based SAT paradigm is often superior to the current

mainstream and that a true melding of search and symbolic techniques can produce scalable,

powerful, and efficient generalizations and extensions of current SAT-based methods. Finally, this

dissertation provides more of the support needed to move past the antiquated notion that SAT

constraints are forever clauses.

6.2 Future Work

This section discusses some of the many open research directions in the realm of state-based SAT.

SBSAT is a research grade state-based SAT framework. For state-based SAT to propagate,

there needs to be a professional grade extensible framework that manages Smurf node allocation,

deletion, and transition. Such a framework could be used by any constraint solver developer to

compactly represent and perform search on user-domain constraints. So, state-based SAT could

benefit from leveraging serious software engineering expertise.

Currently, Smurfs produce witness clauses for inferences found during search. This can be,

simply put, a huge drain on the power gained by using Smurfs. This sentiment is perfectly stated

in [58]:

...the learning method is the key to improving the strength of the underlying proof
system... Methods that use stronger representations, but fail to incorporate strong in-
ference rules, do not gain the extra pruning power available when strong representations
are combined with strong inference.

For state-based SAT search to truly shine, an equally powerful learning scheme must be discovered.

Developing new state-based SAT implementations of domain specific constraints is worthwhile.

Versatile data-structures such as Smurfs have the potential to go far beyond their current state

of use. So far, research has focused on Boolean Smurfs even though they could easily be used

to represent constraints in other domains, for example, monomorphic arithmetic functions com-

monly used in cryptographic software verification [62]. Each new Smurf type can capture different

problem structure, facilitating the development of new heuristics that capitalize on global semantic
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relationships between constraints.

More speculative directions include tapping into the power of extended resolution by creating

new variables to represent active Smurf nodes and using them akin to extended resolution during

witness clause generation. Also, research into safe-assignments [143], a form of autarky generalized

to BDDs, could be beneficial to Smurfs because safe-assignments can be memoized on Smurf

transitions, potentially providing more cuts to the search space.
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